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Introduction

Extra-pair (EP) mating is common in many avian systems, 
yet our ability to predict the EP mating behavior of indi-
vidual birds remains limited (Brouwer and Griffith 2019), 
partly due to a lack of information about variation in mate 
sampling. We thus have an incomplete view of the influence 
of EP mating on evolutionary processes within populations. 
Measuring variation in mate sampling and EP mating across 
individuals is necessary for understanding the geographic 
scale of mate selection behavior and its outcomes for 
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Abstract
Extra-pair mating is common in avian species and can modulate the strength of sexual selection. Mate searching behavior 
of female birds may be an important predictor of mating opportunities and extra-pair mating, yet important knowledge is 
lacking as we have little data on fine-scale movement of females during the peak fertilization period. Accordingly, much is 
still unknown about whether and how female phenotypes contribute to extra-pair mating. Here, we examined how female 
space use and female plumage color are associated with extra-pair mating outcomes in wild barn swallows (Hirundo 
rustica erythrogaster). We tracked 10 females breeding in Colorado, USA with GPS backpack tags for two hours each 
morning during their fertile period following an experimental nest failure. We then used low-coverage whole-genome 
sequencing to determine offspring paternity and to quantify extra-pair mating in the removed clutch and the replacement 
clutch. Plumage and movement did not correlate with changes in paternity between successive clutches, but movement 
did correlate with paternity in the replacement clutch. Females that spent more time away from the nest had a higher 
proportion and number of extra-pair offspring in the clutch laid immediately after the tracking period. These results sug-
gest that differences in female space use contribute to differences in extra-pair fertilizations. In contrast to the historic 
emphasis on male traits, our study highlights female movement behavior as an important variable associated with mating 
outcomes in natural populations.

Significance statement
Mate choice is a critical step in reproduction, but variation in how extensively individuals in the wild search for and 
sample potential mates is not well understood. We measured movement behavior of female barn swallows during their 
fertile period to assess variation in mate sampling and linked this to variation in mating outcomes. We expected that 
females that flew farther would encounter more potential mates and produce offspring with multiple males. By tracking 
females’ movement after removing their first clutch of eggs, we were able to correlate female movements with paternity 
in the collected and replacement clutches. We found that females that spent more time away from the nest, but didn’t 
necessarily cover a larger distance, were more likely to have offspring with mixed paternity in their replacement clutch.
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population genetic structure. Because female choice is an 
important component controlling EP fertilizations in many 
bird species (Lifjeld and Robertson 1992; Kempenaers and 
Dhondt 1993), exploring factors that help explain variation 
in EP mating among individual females is pivotal to under-
standing this very common reproductive strategy.

EP mating by females has mostly been investigated rela-
tive to the traits of their social mates, as well as the abun-
dance and quality of possible EP males. The indirect genetic 
benefits hypothesis (aka “good genes”) is often used as an 
adaptive explanation for EP mating by females (Kempenaers 
and Dhondt 1993), but variation in proximate drivers such 
as access to potential mates or phenotype variation among 
individual females could also influence their propensity to 
engage in EP mating. These proximate variables may shape 
female mating behavior irrespective of variation in avail-
able males. For example, in blue tits (Cyanistes caeruleus), 
individuals that interact with a greater number of opposite 
sex partners are more likely to have extra-pair offspring 
(with similar effect sizes for females and males, although 
the effect was only statistically significant in males) (Beck 
et al. 2021). Similarly, in red jungle fowl (Gallus gallus), 
females that interact with a greater number of males are 
more polyandrous (McDonald et al. 2019).

In addition to variation in social interactions, female 
phenotype and morphology may influence EP mating by 
impacting a female’s ability to solicit or repel EP mat-
ing attempts, as described in the “Constrained Female” 
hypothesis (Gowaty 1996a). Recent studies in barn swal-
lows (Hirundo rustica) show that female flight feather size 
(Costanzo et al. 2017) and age (Michálková et al. 2019) are 
positively correlated with EP mating, even after accounting 
for traits of the social male. Females with higher body con-
dition in scissor-tailed flycatchers (Tyrannus forficatus) had 
higher rates of EP paternity (Roeder et al. 2019), and experi-
mental manipulations of wing shape (Plaza et al. 2019a) and 
body condition (Plaza et al. 2019b) in female pied flycatch-
ers (Ficedula hypoleuca) caused increases in EP paternity. 
These patterns could be driven either by reduced flight abil-
ity of females that decreases their ability to avoid EP copu-
lations, or by increased energy (from higher body condition) 
that improves the ability of females to avoid mate guarding 
and seek out preferred EP males. Thus, female traits, espe-
cially those that may be indicators of individual condition 
or social interactions, deserve greater attention in studies of 
EP mating.

We highlight female movement behavior and plumage 
phenotype as two key variables that may be associated with 
EP mating in birds. In the absence of data on direct mate 
encounters, individual movement during the fertile period 
is a useful proxy for mate sampling (Luepold et al. 2024). 
Movements away from territories during the fertilization 

period are associated with EP copulations (Norris and 
Stutchbury 2001), and individuals do not always share fer-
tilizations with EP mates that are in close proximity (Men-
nill et al. 2004; Canal et al. 2012). Distance and time spent 
away from the nest may therefore have important associa-
tions with individual EP mating. Evidence from birds (Dou-
ble and Cockburn 2000; Stapleton and Robertson 2006; 
Dunn and Whittingham 2007) and other taxa (e.g., crickets, 
lizards, and shrews) (Hissmann 1990; Stockley et al. 1994; 
Kamath and Losos 2018) show that individuals that move 
farther do indeed encounter a greater number of potential 
mates, and in some cases this is positively correlated with 
multiple mating (Stockley et al. 1994; Double and Cock-
burn 2000; Kamath and Losos 2018). Importantly, move-
ment behavior determines the sex ratio and trait distributions 
experienced by each individual, which could differ from the 
population-level and ultimately control the overall strength 
of sexual selection (Kasumovic et al. 2008; McDonald and 
Pizzari 2018; Daupagne et al. 2023). Therefore, the spatial 
scale of individual mate sampling and access should be 
directly measured in order to improve our understanding of 
EP mating and its role in sexual selection (Schlicht et al. 
2015; Maldonado-Chaparro et al. 2018).

Female phenotype may also correlate with EP mating. 
Plumage phenotypes are a common target of sexual selec-
tion in birds, and many species exhibit ornamented plumage 
in females and/or males (Amundsen 2000). In some cases 
more ornamented females have more EP offspring (Torres 
and Velando 2005; Costanzo et al. 2017) – mirroring pat-
terns seen in males (Wells et al. 2016) (but see also (Grunst 
and Grunst 2014; Jacobs et al. 2015; Berzins and Dawson 
2020), and female ornamentation may be a signal of qual-
ity as suggested by assortative mating (MacDougall and 
Montgomerie 2003; Zwaan et al. 2019). In general, female 
plumage is likely an important signal in social interactions. 
Female tree swallows (Tachycineta bicolor) with brighter 
breast plumage appear to be more social than dull females 
(Taff et al. 2019), and manipulation of plumage color in 
female barn swallows caused shifts in testosterone and 
markers of oxidative stress which were likely mediated by 
changes in social interactions (Vitousek et al. 2013). Female 
plumage color may also be an indicator of the female’s 
own physical condition and ability to invest energy into 
mate choice (Byers et al. 2005; Vitousek 2009; Nolazco 
et al. 2022). Because ornamented plumage is often associ-
ated with diet quality, parasite load, or age (Roulin et al. 
2001; Siefferman and Hill 2005; Hegyi et al. 2008; Griggio 
et al. 2010; Vergara et al. 2011; Bradley et al. 2014), more 
ornamented females may be healthier or more experienced 
and be able to invest more energy into mating decisions. 
Thus, female plumage is likely relevant for EP mating, but 
we know little about how it relates to space use during the 
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fertilization period, a time during which movement is most 
likely associated with the search for extra-pair males.

Barn swallows are a well-studied, socially monogamous 
songbird and experimental manipulations in males have 
shown that plumage traits are targets of sexual selection. 
Interestingly, outer tail length and ventral plumage color 
vary across different global regions and subspecies, female 
phenotype is similar to male phenotype within subspecies, 
and differences are maintained at least partly by sexual 
selection (Møller and Gregersen 1994; Scordato and Safran 
2014; Safran et al. 2016a; Romano et al. 2017). While tail 
length is the main sexual signal in the European subspecies, 
Hirundo rustica rustica (Møller et al. 1998), darker ventral 
plumage color is under sexual selection in North American 
(Hirundo rustica erythrogaster) and some Asian subspecies 
(Safran and McGraw 2004; Hasegawa et al. 2010; Vortman 
et al. 2011). Experimentally darkened males in Colorado 
and New York sired a higher proportion of the offspring 
in their social nest (Safran 2005; Safran et al. 2016b), and 
darkened males in Colorado increased interactivity with 
their social mate (Levin et al. 2018). These experiments 
show that female barn swallows are sensitive to changes in 
male phenotypes during the breeding season, and dynami-
cally update their mating decisions based on these changes. 
Therefore, females may also be sensitive to encounters with 
potential mates when making dynamic decisions about 
paternity allocation both within and outside of the pair bond 
throughout the breeding season.

There is some evidence that EP mating is correlated 
with female plumage color and morphology in barn swal-
lows. In Europe, females with larger wings and tails had a 
higher proportion of EP offspring, and significant variation 
in EP mating was explained by pair ID but not female age 
class (Costanzo et al. 2017). These authors also reported 
that females with lower UV reflectance of ventral plumage 
were more likely to engage in EP mating, but this finding is 
inconsistent with previous studies which found little to no 
reflectance of pigmented ventral feathers in the UV range 
for multiple subspecies (H. r. rustica, H. r. erythrogaster, 
and H. r. transitiva) (McGraw et al. 2004, 2005; Vortman 
et al. 2011; Saino et al. 2013; Hubbard et al. 2017). For the 
North American subspecies, female ventral plumage within 
individuals tends to get darker with age, although the full 
range of plumage color is present within each age class 
(Bradley et al. 2014). As such, plumage color per se is not 
a reliable indicator of age. In a study that did not account 
for female age, darker females started breeding earlier and 
had higher reproductive success than pale females (Safran 
and McGraw 2004). We build upon existing studies of barn 
swallows by investigating ventral plumage color in the vis-
ible spectrum as a predictor of EP mating in female North 
American barn swallows.

Here, we explore the idea that female plumage color and 
female movement may both influence EP mating outcomes 
in barn swallows breeding in Colorado, USA. Females vary 
in EP mating with individual clutches containing from 0 to 
100% extra-pair offspring (Hubbard et al. 2015). Breeding 
pairs are semi-colonial and clustered across the landscape, 
yet variation in colony size is not correlated with rates of 
EP offspring (Safran 2007). We expect to see large variation 
in female movement behavior during the fertile period and 
predict that this variation relates to EP mating. We hypoth-
esize that female movement away from the nest increases 
female encounters with potential EP mates and reduces 
opportunity for mate guarding by the social male. Our pre-
diction is that longer distances and more time away from 
the nest will be associated with a higher proportion and 
number of EP offspring and a greater number of EP sires. 
Dark females should have higher EP mating overall, since 
they may be more attractive, healthier, or better at avoiding 
mate guarding than pale females. Similarly, female move-
ment and plumage may correlate with the change in pater-
nity allocation between successive clutches. On average, 
females tend to allocate less paternity to their social mate 
after a nest failure (Safran 2005; Safran et al. 2016b). In this 
situation, we expect dark females or those that move farther 
or more often to have the greatest increase in EP paternity 
between first and second nesting attempts. We leverage 
experimental nest failures to directly study female move-
ment during the fertile period in association with paternity 
patterns in the replacement clutch, and the change in pater-
nity between initial and replacement clutches. To accom-
plish this, we simulated a commonly occurring nest failure 
event and then tracked females using GPS tags to analyze 
fine-scale movements during the peak fertility period asso-
ciated with clutch replacement. The strength of this study 
is our ability to directly link female movements during the 
fertile period to individual plumage phenotype and mating 
outcomes, which we use to explore the importance of under-
studied female traits.

Materials and methods

To analyse the relationship between individual space use 
and mating in female barn swallows, we tracked movement 
using GPS backpack tags on 11 females in June 2021 for 
two hours each morning. We then related measures of each 
female’s movement to her proportion of EP offspring, num-
ber of EP offspring, and number of EP sires. We allowed 
birds to settle at breeding sites (barns) in Boulder County, 
Colorado and lay their first clutch of eggs. We then collected 
the eggs 11–13 days into incubation and captured females 
off the nest using mist nets and by hand. We attached a 1 g 
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social mate near the nest (Chiver et al. 2008; Maldo-
nado-Chaparro et al. 2018).

5) Proportion of GPS points past 100 m of the nesting barn, 
representing the proportion of time a female spends at 
more distant locations. Mating may be related to time 
spent at more distant locations (> 100 m) if mate guard-
ing by the social male occurs at closer locations to the 
barn (Møller 1985, 1987).

We used R version 4.4.1 (R Core Team 2024) and R Studio 
(R Studio Team 2024) to perform all analyses and generate 
plots, and used the package adehabitatHR to calculate the 
KDE metrics (Calenge 2006) (Supplementary Information 
Section S2).

Measuring plumage color

We measured plumage color by taping 5–10 belly feathers 
to a white notecard such that the feathers overlapped as they 
do on the body of the bird. We recorded average bright-
ness (relative percent reflectance averaged across the 300–
700 nm wavelength spectrum) in triplicate using an Ocean 
Optics UV-VIS spectrometer and pulsed xenon light (P-X2, 
Ocean Optics) as in Hubbard et al. (2015). The probe was 
held perpendicular to the feather patch such that a 2.5 mm 
diameter was illuminated. The probe was lifted and replaced 
on the sample after each replicate to ensure independent 
measurements. Reflectance was calibrated against a white 
standard (Labsphere, Inc., North Sutton, NH, USA) and a 
dark standard (reflectance in the absence of light). Feather 
patches with a lower brightness value have more melanin 
and are visually darker in color (McGraw et al. 2005). We 
used brightness because it is the least prone to measurement 
error and noise from the instrument. We sampled feathers 
from the belly because this is the largest ventral area and 
tends to be the most variable in color across individuals.

Paternity analysis

We sequenced the genomes of parents and offspring to 
reconstruct a fertilization network based on estimated pair-
wise relatedness among individuals. We extracted genomic 
DNA from blood samples and shipped samples to NovoGene 
(Sacramento, CA) for library preparation and whole genome 
Illumina sequencing, targeting 2x coverage. We trimmed 
and filtered sequencing data, aligned to the barn swallow 
reference (Feng et al. 2020), and called single nucleotide 
polymorphisms (SNPs). After filtering, we calculated geno-
type likelihoods for 92,438 unlinked SNPs that were used 
for relatedness calculations. We used lcMLkin (Lipatov et 
al. 2015) to estimate pairwise relatedness among all sam-
pled individuals. This method uses maximum likelihood to 

(5–8% of bird body mass) GPS tag (Lotek ‘Pinpoint 10’, 
Lotek Wireless, Inc., Newmarket, ON, Canada) to each 
female, banded birds with metal and color bands, and col-
lected ventral body feathers and a small blood sample from 
the brachial vein. Tags recorded GPS coordinates every 
10 min from 7-9am each day until the batteries died (range 
of 7–11 tracking days). We chose to record movement data 
in the morning because this is when the birds are typically 
most active, and other tagging studies of barn swallows 
have used a similar time window (Levin et al. 2016, 2018; 
Madden et al. 2022). The tags are constrained by battery 
life, and we elected to maximize replication across multiple 
days, rather than recording data for a longer period each 
day. After tagged females laid their replacement clutch, we 
recaptured them and removed their tag. We also captured 
males throughout the breeding season to sample blood from 
all social mates and as many potential EP mates as possible. 
We conducted observations at active nests to determine the 
identity of social pairs. It was not possible to record data 
blind because our study involved focal animals in the field. 
We monitored breeding success for the remainder of the 
breeding season and collected nestling blood samples for 
paternity analysis at 12 days old (full field methods are in 
Supplementary Information Section S1).

Processing spatial data

We calculated five metrics from the GPS data which could 
represent different biological processes related to mating 
decisions as follows:

1) Maximum distance traveled from the nesting barn, rep-
resenting the farthest recorded extent of the female’s 
movement. Mating may be related simply to single 
encounters of potential mates, with no importance of 
repeated visits to a location (Gibson and Langen 1996).

2) Area of the estimated 90% density region for GPS points 
(“90% KDE area”), representing the “home range” area 
for a female. Mating may be related to total space use, 
but with less importance given to one-off visits to dis-
tant locations.

3) Area of the estimated 50% density region for GPS 
points (“50% KDE area”), representing a female’s “core 
use area”. Mating may be related to mates encountered 
within the core use area, which are likely visited more 
than once during the fertile period (Trail and Adams 
1989).

4) Proportion of GPS points past 50 m of the nesting barn, 
representing the proportion of time a female spends 
away from her nest and the immediate area around the 
barn. Mating may be related to time spent sampling 
other males in her home barn, or time spent with her 
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mating measures in the replacement clutch. Although sev-
eral of the movement components were highly correlated 
with each other (Supplementary Fig. S2), they may have 
distinct biological importance for mating behavior and 
thus we examined all movement components separately. 
We used the corrected Akaike Information Criterion, AICc, 
(Hurvich and Tsai 1989; Akaike 1998) to choose the best 
movement component for predicting proportion of EP off-
spring, number of EP offspring, and number of EP mates in 
the replacement clutch. We then carried the same movement 
components into the models for change in EP mating.

We fitted a separate model for each EP mating outcome. 
First, we give details for the replacement clutch models. 
For proportion of EP offspring, we fitted logistic regres-
sion models and accounted for variation in clutch size by 
weighting observations by clutch size. For one of the tagged 
females (Cooks 27), the replacement clutch failed before the 
offspring could be sampled for DNA, so this individual was 
excluded, leaving 10 individuals for all analyses. For the 
number of EP offspring, we fitted Poisson regression mod-
els, which did not include a covariate for the clutch size in 
order to model the absolute number of EP offspring rather 
than the number given a constant clutch size. For the number 
of EP sires, we fitted Poisson regression models with clutch 
size as a fixed effect to account for any influence of number 
of offspring sampled on the number of EP sires detected. To 
avoid over fitting models with our limited sample size, we 
did not include group size or social male plumage color as 
predictors in the models of EP mating.

To model the change in EP mating between clutches, we 
fitted linear regression models for all three paternity mea-
sures. We used the same movement and plumage variables 
as in the replacement clutch models as explanatory vari-
ables. To simplify the interpretation of results for the change 
in proportion of EP offspring, we did not include a covari-
ate for clutch size. Generally, clutch sizes are expected to 
decrease as the breeding season progresses. For change in 
the number of EP sires, we did not include a covariate for 
number of offspring sampled since the combined number 
of offspring between the collected and replacement clutches 
was not correlated with the change in number of sires 
(Spearman ρ = 0.02, p = 0.956).

Statistical significance of the slope terms was assessed 
using likelihood ratio tests at the α  = 0.05 level for all mod-
els. We additionally calculated 95% confidence intervals for 
regression parameters of interest. We visualized the model 
predictions by back transforming to the original scale. 
Although our data includes instances of repeated measures 
within site (multiple females tracked from the same site), 
we did not statistically account for the effect of site due to 
our limited sample size. A single female was sampled at two 
out of six sites, so any estimate of a site effect for these 

estimate relatedness coefficients from genotype likelihoods 
rather than genotype calls, which is optimal for low-cov-
erage data. In all cases, the mother assigned to each nest 
through behavioral observations matched the genetic mater-
nity assignments. Therefore, we did not have to account for 
intraspecific brood parasitism and were confident that we 
could accurately identify genetic sires using known mother-
offspring relationships as a benchmark. Here, we used the 
minimum relatedness value from known mother-offspring 
relationships as a threshold value to assign sires. The distri-
bution of relatedness values for mother-offspring and sire-
offspring relationships did not significantly differ (Welch 
two sample t-test, t=-0.332, p = 0.740; Supplementary Fig. 
S1). The identity of genetic sires was then used to categorize 
within-pair and EP offspring, and to count the number of 
unique EP sires for each female. For a detailed description 
of the bioinformatics workflow and software versions, and 
additional details about the paternity analysis, see Supple-
mentary Information Section S3.

Statistical analyses

We assessed EP mating in the replacement clutch, and the 
change in EP mating between the collected and replacement 
clutches, using three response variables: (1) the proportion 
of EP offspring, (2) the number of EP offspring, and (3) the 
number of EP sires. This allowed us to assess variation in the 
allocation of paternity to the social mate, as well as variation 
in multiple mating. We calculated the change in EP mating 
between clutches as the difference between the replacement 
and collected clutch. Thus, a positive difference indicates an 
increase in EP mating between time points.

Before fitting models for EP mating by females, we 
checked for possible confounding variables that could cause 
spurious correlations between EP mating and female move-
ment, or between EP mating and female plumage color. We 
first considered social male plumage color (belly average 
brightness, measured as in females) and breeding group 
size (number of active breeding pairs in a barn during first 
clutches), since these could both influence patterns of mat-
ing and movement. We assessed these possible confounding 
relationships using Spearman rank correlations and checked 
for statistical significance at the α  = 0.05 level. We used 
Spearman (rank) correlations because these were appropri-
ate for our small sample size and generally non-Gaussian 
variable distributions. We also measured the correlation 
between female age class (SY, second year; ASY, after sec-
ond year) and plumage color in our sample using a Wil-
coxon rank sum exact test.

To avoid fitting models for all combinations of move-
ment and mating variables, we first evaluated the associa-
tion between each movement component and the three EP 
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EP mating. The mean proportion of GPS points (± SD) 
past 50 m was 0.90 (± 0.1). This high proportion of points 
away from the nesting barn reflects the fact that our track-
ing period is at a time of day when the barn swallows tend 
to be actively foraging and flying, rather than resting near 
the barn (HKD and RJS personal observations). Overall, we 
found support for our hypothesis that female space use is 
associated with EP mating for replacement clutches in two 
out of the three mating variables (Table 1; Fig. 4). Females 
with a greater proportion of points away from the barn were 
significantly more likely to have a higher proportion of EP 
offspring, and marginally more likely to have a greater abso-
lute number of EP offspring, than females that spent more 
time near the barn (Fig. 4). Each additional 10% points of 
GPS points away from the barn corresponds to 185% higher 
odds of an additional EP offspring (estimated odds ratio 
2.85, 95% CI: 1.31, 7.90); the more often a female stays 
away from her home territory, the more EP offspring she 
produces. While the effect of movement on the number of 
EP sires followed the same pattern as the other two mating 
variables, it was not statistically significant. For the change 
in EP mating between successive clutches, females with a 
greater proportion of points away from the barn tended to 
increase EP mating to a greater extent in the replacement 
clutch compared to the collected clutch, but none of the 
parameter estimates were statistically significant (Table 2). 
Accounting for female plumage color in the models did not 
meaningfully change the effect or significance of the move-
ment variable; plumage color was not a significant predictor 
of EP paternity for any of the models (Tables 1 and 2).

Discussion

We showed evidence that female movement behavior is 
important for understanding mating outcomes in barn swal-
lows. Our study is based on fine-scale measures of female 
movement during a critical period of reproduction: fertiliza-
tion. Although our sample size is limited to 10 females and 
movement was recorded for only 2 h each day, our sample 
is representative in terms of EP mating after an experimen-
tally simulated nest failure (Safran et al. 2016b where the 
average proportions of within-pair offspring in the collected 
and replacement clutches were respectively 0.77 (± 0.39) 
and 0.53 (± 0.37)), and provides valuable information about 
the spatial scale of mate sampling by females. Our current 
study complements the findings of Costanzo et al. (2017) by 
investigating a different subspecies of barn swallow (North 
American rather than European), focusing on visible ventral 
plumage color as a locally relevant sexual signal rather than 
UV ventral reflectance, and measuring female movement 
during the fertile period to further understand variation in 

sites would be severely underpowered. All Figs were cre-
ated using R version 4.4.1 and edited for clarity in Adobe 
Illustrator or Microsoft PowerPoint.

Results

Female movement was not significantly correlated with 
group size or social male plumage color in our sample 
(Supplementary Table S3). Female plumage color tended 
to be negatively correlated with movement, meaning darker 
females (those with lower brightness values) moved farther 
and spent more time away from the nest, although none of 
the correlations were statistically significant. The correla-
tion coefficients between movement and plumage color 
also tended to be larger for female color than social male 
color (Supplementary Table S3). Female plumage color did 
not differ significantly by age class (second year and after 
second year; Wilcoxon rank sum exact test p = 0.83; Sup-
plementary Fig. S3). Breeding group size and social male 
plumage color did not significantly correlate with any pater-
nity measures, although patterns tended to be stronger in the 
collected clutch (Supplementary Table S4). The mean num-
ber of GPS points collected for each female was 87.8 (range 
61–128, Supplementary Table S5), and movement behavior 
varied over the course of the tracking period (Fig. 1; Supple-
mentary Table S5; Supplementary Fig. S4). Females were 
not observed to visit neighbouring breeding sites during the 
tracking period, and there was very little overlap of home 
ranges for females from different barns (Fig. 2, Supplemen-
tary Figs S5, S6).

In the replacement clutch, the mean (± SD) proportion 
of EP offspring was 0.48 (± 0.39), the mean number of EP 
offspring was 1.8 (± 1.47), and the mean number of EP 
mates was 0.9 (range 0–2). For the change in EP mating, 
the mean difference (± SD) in proportion EP offspring was 
0.18 (± 0.69), the mean difference in number of EP offspring 
was 0.4 (± 2.9), and the mean difference in number of EP 
sires was 0.5 (± 0.97). Figure 3 shows the fertilization types 
in each clutch for each female. Female EP mating in the 
replacement clutch was not significantly correlated with EP 
mating in the collected clutch (Supplementary Table S6). 
The average proportion of within-pair offspring (± SD) in 
the collected and replacement clutches were 0.64 (± 0.46) 
and 0.52 (± 0.39), respectively. Additional details about col-
lected and replacement clutch paternity are in Supplemen-
tary Table S7.

The movement component with lowest AICc for the 
three mating variables in the replacement clutch was the 
proportion of points greater than 50 m from the home barn 
(Supplementary Tables S8-S10). Therefore, we used this 
measure as the movement variable for all final models of 
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Fig. 1 Daily movement areas for each female. A-D show daily mini-
mum convex polygons using 100% of the GPS points each day for 
four of the ten females. Daily polygons for the other six females are 
in Supplementary Fig. S4. Tracking days with fewer than 5 points are 
excluded because polygons cannot be reliably calculated with so few 
points. Shaded polygons encompass all points recorded in each day 
and different days are displayed in different colors. Points show the 

locations of the GPS fixes, and the black triangles show the location of 
the nesting barn. Note that the scale and dates of tracking vary among 
panels, and the number next to the scale bar indicates the total length 
of the bar. Panel E shows polygon areas over time for each of the 
tracked females. Note the y-axis break to show the Cooks-31 large 
area on 06–21
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with potential mates, and this pattern remains significant 
even after accounting for a female’s own phenotype.

Female movement correlates with EP mating in the 
replacement clutch

Our results support the hypothesis that female movement 
immediately prior to laying influences mating in replace-
ment clutches (both in proportion and number of EP off-
spring). Spending more time away from the nest may mean 
that a female spends less time with her social mate, which 
thus sires fewer offspring in the replacement clutch. Simi-
lar relationships between paternity and time spent with the 
social mate have been found previously in hooded warblers 
(Chiver et al. 2008) and captive zebra finches (Maldonado-
Chaparro et al. 2018). However, other work that directly 
measured social interactions between barn swallow social 
pairs found that increased interactivity between social mates 
did not lead to an increase in the proportion of within-pair 

EP mating. The magnitude of movements documented here 
is similar to those of female barn swallows tracked while 
caring for nestlings (Madden et al. 2022) which suggests 
that space use does not change dramatically across stages of 
breeding. Our results highlight the importance of consider-
ing female movement behavior to understand patterns of EP 
mating in barn swallows. We found that individual females 
vary substantially in movements during their fertile period, 
and that the time spent away from the nesting barn is partic-
ularly useful for understanding the allocation of extra-pair 
offspring in the replacement clutch. Female plumage color, 
on the other hand, was not predictive of EP mating, and we 
did not find support for the hypothesis that darker females 
are more likely to have EP paternity than paler females. 
Plumage color is easier to collect than movement data, and 
future studies should examine the influence of female plum-
age color on EP mating, and explore the potential for an 
interaction between movement behavior and plumage color, 
in a larger sample. Together, our findings suggest that indi-
vidual space use is a relevant proxy for social interactions 

Fig. 2 Movement areas and GPS 
points for tracked females. Home 
range (90% KDE, solid borders) 
and core use areas (50% KDE, 
dashed borders) for barn swallow 
females tracked in June 2021 
near Boulder, CO. Each female 
is shown in a different color. 
Individual GPS points are open 
circles, and the nesting barns 
are black triangles. Details of 
smaller movement ranges are in 
electronic supplementary mate-
rial Figs S5, S6. The Cooks 27 
female (orange) was excluded 
from analyses due to missing data
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foraging or exploration, that are not associated with mate 
searching. Our findings contrast with those from superb 
fairy-wrens (Double and Cockburn 2000) and tree swallows 
(Dunn and Whittingham 2007), where the distance moved 
by females did influence the number and identity of EP sires. 
This result may reflect mate encounters being jointly influ-
enced by male and female movement patterns. Additionally, 
our limited tracking window may not have fully captured 
important movements for EP copulations. Additional work 
addressing these potential limitations will be valuable for 
more comprehensively explaining variation in EP mating by 
female barn swallows.

Female traits do not correlate with dynamic 
paternity allocation between clutches

Previous experimental studies have shown that female birds 
dynamically update their reproductive investment based on 
perceived current male quality (e.g., paternity allocation in 
barn swallows (Safran 2005; Safran et al. 2016b) and egg 
size in blue-footed boobies (Velando et al. 2006)). Thus, 
we predicted that females may also update mating deci-
sions based on movement and assumed spatial encounters 
with potential males. The direction of the slope estimates 
matched with this prediction, where females that stayed 
away from the barn more often tended to increase their EP 
mating after the experimental nest failure (Table 2). Given 

offspring when the timing of breeding was synchronized 
(Levin et al. 2018).

One caveat of our results is that we are unable to fully 
rule out an influence of female age on both movement and 
EP mating. Our sample consisted of three ASY females and 
seven SY females. This small and uneven sampling makes 
it difficult to determine the true age-related patterns. Other 
studies have found female age as an important predictor of 
EP paternity (Moreno et al. 2015; Michálková et al. 2019; 
Raj Pant et al. 2020), although the direction of the pattern 
is inconsistent across studies. Some females decrease EP 
paternity with age, others increase, and others have a peak 
of EP paternity in midlife. The mechanisms underlying this 
relationship are not known, and females may display age-
based movement strategies during the fertile period which 
act as a proximate mechanism to explain differences in EP 
paternity across age classes. Explicitly testing the influence 
of female age on EP paternity and movement patterns is an 
important area for further research.

Contrary to our predictions, there was no strong evidence 
that the distance moved away from the barn or the move-
ment area sizes correlated with EP mating in the replace-
ment clutch. The AICc comparisons show that none of the 
distance or area measures fitted better than the null model 
(Supplementary Tables S8-S10). This finding could be an 
indication that distance and area-based movement metrics 
reflect other types of female movement patterns, such as 

Fig. 3 Fertilization number and type split across broods for 2021 GPS 
tagged females. The “collected” label refers to the eggs from the first 
brood that was collected immediately before attaching the GPS tag; 
“replacement” is the replacement clutch laid immediately after the 
tracking period. Colors indicate the identity of the genetic sire. For 
fertilization types, “within-pair” means the sire is the social male, 

“extra-pair (same site)” means the genetic sire is an EP male of known 
identity that nested at the same site as the focal female, “extra-pair 
(different site)” means the genetic sire is an EP male of known identity 
nesting at a different site than the focal female, and “sire unknown” 
means the genetic sire was not sampled and his identity is therefore 
unknown
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Future directions

We have found intriguing evidence that female space use 
during the fertile period correlates with EP mating in a sam-
ple of North American barn swallows. We hope these find-
ings motivate further research to determine if this pattern 
holds across breeding years, across populations, and even 
across species. While our sample size is limited, this study 
highlights the potential for variation in female behavior to 
be more important than previously thought for understand-
ing EP mating. In our preliminary analysis, female traits 
were more strongly correlated with EP mating than the 
more conventional predictors of group size and male traits. 
For the females included in our study, group size did not 
significantly correlate with female movement or EP mating. 
While not necessarily intuitive, this pattern does match with 
previous work where female EP mating did not vary with 
group size in a much larger sample (Safran 2007). In fact, 
in our data, females from larger groups tended to be darker 

that difference variables are especially noisy due to com-
pounded errors, this part of our analysis may suffer from 
low statistical power with our small data set. It is also pos-
sible that changes in paternity after a clutch failure are more 
influenced by the temporal changes in mate availability than 
spatial encounters with mates. During first clutches, the ear-
liest breeding females may not have the opportunity to mate 
with later arriving males. By the time we performed egg 
collections for this study in early to mid-June, the majority 
of birds should have arrived and started breeding. Females 
therefore had access to a different pool of potential mates for 
their replacement clutches. Temporal synchrony of breeding 
is a popular ecological factor studied in relation to EP mat-
ing, and a recent review paper suggests that higher breeding 
synchrony does correlate with higher rates of EP mating in 
barn swallow populations (using high latitude as a proxy for 
higher breeding synchrony) (Brouwer and Griffith 2019).

Table 1 Model results for EP mating in the replacement clutches. The 
models for proportion EP offspring (EPO) are logistic with a weights 
term for clutch size. The models for number of EPO and number of 
EP sires are Poisson models. Confidence intervals are upper and lower 
95%, and p-values are from Type II ANOVA tests. Coefficients are 
bolded if the p-value is less than 0.05. All model estimates are on the 
model scale and have not been back-transformed
Model results for EP mating in the replacement clutch
Proportion EPO

Beta 
est.

Lower 
CI

Upper 
CI

p

(Intercept) -9.49 -18.73 -2.52
proportion past 50 m 10.34 2.64 20.36 0.007
(Intercept) -10.17 -21.52 -1.15
proportion past 50 m 10.46 2.69 20.67 0.007
female plumage brightness 0.02 -0.17 0.21 0.820
Number EPO

Beta 
est.

Lower 
CI

Upper 
CI

p

(Intercept) -3.88 -10.33 1.15
proportion past 50 m 4.88 -0.61 11.66 0.084
(Intercept) -5.10 -14.36 1.95
proportion past 50 m 5.33 -0.47 12.86 0.074
female plumage brightness 0.03 -0.10 0.16 0.648
Number EP sires

Beta 
est.

Lower 
CI

Upper 
CI

p

(Intercept) -3.59 -14.43 4.83
number of chicks in replacement -0.09 -0.74 0.55 0.771
proportion past 50 m 4.21 -3.60 14.63 0.314
(Intercept) -4.66 -18.67 6.14
number of chicks in replacement -0.10 -0.75 0.54 0.743
proportion past 50 m 4.62 -3.60 15.83 0.293
female plumage brightness 0.03 -0.16 0.22 0.764

Fig. 4 Model predictions and raw data showing the relationship 
between the proportion of points past 50 m from the barn and EP mat-
ing outcomes in the replacement clutch, after accounting for female 
plumage color. Shaded areas show 95% confidence intervals, lines 
show model predictions, and the solid line indicates a significant effect 
(p < 0.05) and the dotted line indicates a marginally significant effect 
(p < 0.1). (A) Proportion of EP offspring in the replacement clutch. 
Point sizes correspond to the total clutch size. (B) Number of EP off-
spring in the replacement clutch
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Conclusions

Many studies of EP mating behavior have exclusively 
focused on male ornamentation and male access to mates. 
We have shown that female movement during the fertile 
period is significantly correlated with EP mating. This 
emphasizes the importance of accounting for female varia-
tion, not just variation in male phenotypes, when predicting 
mating outcomes. We anticipate that incorporating female 
movement into studies of EP mating and sexual selection 
in other systems will further illuminate factors that contrib-
ute to the process of trait evolution in natural populations. 
Indeed, putting equal emphasis on the importance of varia-
tion in both females (Gowaty 1996b) and males is crucial 
for a balanced and clear understanding of evolutionary ecol-
ogy as a whole.
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and move farther than females from smaller groups, though 
this may not be the case at the population level (Supple-
mental Table S3). Female mass tended to be positively cor-
related with the movement metrics, suggesting that larger 
females may be in better condition and have more energy 
to fly around. Collecting additional data on other traits such 
as fat score that are related to female condition may help 
to explain proximate drivers of female movement variation 
during the fertile period.

Social male plumage color also did not correlate signifi-
cantly with movement, EP mating in the replacement clutch, 
or change in EP across clutches, but it was more strongly 
correlated with mating in the collected clutch (Supplemen-
tary Table S5). This pattern matches with larger studies of 
North American barn swallows where male plumage color 
predicted the proportion of within-pair offspring in his 
social nest (Eikenaar et al. 2011). An interesting possibility 
is that female mating decisions are influenced more strongly 
by social mate plumage color during first clutches, but after 
a nest failure, other factors such as female movement may 
play a larger role in mating outcomes. Future experimen-
tal work manipulating female plumage color directly and 
examining the impacts on EP mating would help disen-
tangle the direct effects of female plumage vs. social male 
plumage color and female body condition.

Table 2 Model results for the change in EP mating between the col-
lected and replacement clutches. All models are linear models. Confi-
dence intervals are upper and lower 95%, and p-values are from Type 
II ANOVA tests
Model results for the change in EP mating between clutches
Proportion EPO

Beta est. Lower CI Upper CI p
(Intercept) -2.71 -7.13 1.71
proportion past 50 m 3.23 -1.68 8.14 0.168
(Intercept) -5.09 -11.02 0.85
proportion past 50 m 3.79 -1.08 8.66 0.108
female plumage brightness 0.07 -0.05 0.19 0.211
Number EPO

Beta est. Lower CI Upper CI p
(Intercept) -9.26 -28.86 10.33
proportion past 50 m 10.78 -10.96 32.53 0.286
(Intercept) -21.87 -46.57 2.84
proportion past 50 m 13.77 -6.51 34.05 0.152
female plumage brightness 0.37 -0.13 0.88 0.123
Number EP sires

Beta est. Lower CI Upper CI p
(Intercept) -3.04 -9.47 3.38
proportion past 50 m 3.96 -3.17 11.08 0.236
(Intercept) -6.79 -15.20 1.61
proportion past 50 m 4.84 -2.06 11.74 0.141
female plumage brightness 0.11 -0.06 0.28 0.170
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