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Abstract

Research has shown that a change in environmental conditions can alter the expres-

sion of traits during development (i.e., “within-generation phenotypic plasticity”) as

well as induce heritable phenotypic responses that persist for multiple generations

(i.e., “transgenerational plasticity”, TGP). It has long been assumed that shifts in gene

expression are tightly linked to observed trait responses at the phenotypic level.

Yet, the manner in which organisms couple within- and TGP at the molecular level

is unclear. Here we tested the influence of fish predator chemical cues on patterns

of gene expression within- and across generations using a clone of Daphnia ambigua

that is known to exhibit strong TGP but weak within-generation plasticity. Daphnia

were reared in the presence of predator cues in generation 1, and shifts in gene

expression were tracked across two additional asexual experimental generations that

lacked exposure to predator cues. Initial exposure to predator cues in generation 1

was linked to ~50 responsive genes, but such shifts were 3–49 larger in later gener-

ations. Differentially expressed genes included those involved in reproduction,

exoskeleton structure and digestion; major shifts in expression of genes encoding

ribosomal proteins were also identified. Furthermore, shifts within the first-genera-

tion and transgenerational shifts in gene expression were largely distinct in terms of

the genes that were differentially expressed. Such results argue that the gene

expression programmes involved in within- vs. transgeneration plasticity are funda-

mentally different. Our study provides new key insights into the plasticity of gene

expression and how it relates to phenotypic plasticity in nature.
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1 | INTRODUCTION

It is now clear that organisms can respond to environmental signals

by altering the expression of traits during development, as well as

modifying traits across multiple generations (Bonduriansky, Crean, &

Day, 2012; Fox & Mousseau, 1998; Jablonka & Raz, 2009; Uller,

2008). This “within-generation phenotypic plasticity” and

“transgenerational plasticity” (TGP or across-generational plasticity)

has been documented in a diverse array of taxa, including plants,

bryozoans, rotifers, beetles and birds (Charmantier et al., 2008; Fox

& Mousseau, 1998; Galloway & Etterson, 2007; Marshall, 2008;

Schr€oder & Gilbert, 2004) in response to numerous environmental

stimuli (e.g., temperatures; Salinas & Munch, 2012; food shortages;

Bashey, 2006; canopy shading; Galloway & Etterson, 2007).
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Research has shown that both within-generation plasticity and TGP

are often adaptive (Agrawal, Laforsch, & Tollrian, 1999; Bashey,

2006; Dyer et al., 2010; Galloway, 2005; Galloway & Etterson,

2007; Salinas & Munch, 2012; Walsh, Cooley, Biles, & Munch, 2015)

and can evolve in response to divergent ecological conditions (Walsh

et al., 2016). The long-standing assumption is that underlying shifts

in gene expression manifest as patterns of plasticity at the pheno-

typic level. Examples of environmentally induced changes in gene

expression within- and across generations are rapidly accumulating

(Aubin-Horth & Renn, 2009; Carone et al., 2010; Herman, Spencer,

Donohue, & Sultan, 2014; Herman & Sultan, 2011; Jablonka et al.,

1995; Miyakawa et al., 2010; Molinier, Ries, Zipfel, & Hohn, 2006;

Simons, 2011; Tollrian & Leese, 2010). Yet, the manner in which

organisms couple within-generation plasticity in conjunction with

TGP in response to a change in environmental conditions, especially

at the molecular level, is unclear.

Recently developed theory predicts that divergent ecological

conditions will select for divergent patterns of within- vs. TGP (Kui-

jper & Hoyle, 2015; Leimar & McNamara, 2015; Uller, English, &

Pen, 2015a). Here, variation in a key environmental selective pres-

sure (i.e., temporal variation in environmental stability) is predicted

to select for increased within-generation plasticity or increased TGP,

but not both. Empirical research has indeed shown that organisms

harbour extensive variation in the direction and magnitude of within-

and across-generation plasticity (Donohue & Schmitt, 1998; Schmitt,

Niles, & Wulff, 1992; Walsh et al., 2015) and that environmentally

induced within- and transgenerational responses can have synergistic

(Galloway, 2009; Lin & Galloway, 2010; Sultan, Barton, & Wilczek,

2009) and antagonistic (Walsh et al., 2015) effects on the traits of

organisms. It follows logically that contrasting gene expression pro-

grammes may be linked to divergent patterns of within- vs. TGP.

Natural selection may alter the path from gene expression to pheno-

typic plasticity because selection for within- or across-generation

plasticity acts either upon the same genes, but drives changes in the

expression levels or in the direction of expression. Conversely, selec-

tion for within- vs. TGP may act upon different genes or on different

numbers of genes. These two hypotheses lie at opposite ends of a

continuous spectrum and are therefore not necessarily mutually

exclusive.

Studies of clonal and ecoresponsive Daphnia sp. offer an oppor-

tunity to examine the manner in which natural selection modulates

connections between gene expression and phenotype within and

across generations. Daphnia are an ubiquitous feature of freshwater

environments (Carpenter, Fisher, Grimm, & Kitchell, 1992), and they

possess characteristics that make them ideal for experimental stud-

ies, including easy culturing, short generation times, parthenogenic

reproduction and many readily quantifiable traits (Miner, De Mee-

ster, Pfrender, Lampert, & Hairston, 2012; Stollewerk, 2010). Daph-

nia species are well known to respond to changes in the

environment by altering the expression of a multitude of traits (Ries-

sen, 1999; Stibor, 1992). For example, exposure to predator chemical

cues elicits dramatic shifts in morphology, behaviour and life history

traits (Tollrian & Harvell, 1999). Research has used these known

patterns of plasticity to begin to consider the underlying molecular

mechanisms for predator-induced plasticity (Rozenberg et al., 2015;

Schwarzenberger, Courts, & von Elert, 2009). For example, Sch-

warzenberger et al. (2009) evaluated patterns of plasticity in gene

expression of several candidate genes in Daphnia magna that were

exposed to chemical cues produced by fish and invertebrate preda-

tors. This approach revealed strong upregulation of cyclophylin,

involved in protein folding in the presence of fish predator cues,

while exposure to invertebrate predator cues was associated with a

downregulation of cyclophylin. Given that Daphnia differ in their life

history responses to fish vs. invertebrate predator cues (Riessen,

1999; Stibor, 1992), these contrasting gene expression responses

could indicate that cyclophylin is linked to the expression of life his-

tory traits (Rozenberg et al., 2015; Schwarzenberger et al., 2009;

Tollrian & Harvell, 1999). Such results provide a clear connection

between phenotypic plasticity and gene expression. Still, the connec-

tions between within-generation responses and TGP at the molecu-

lar level remain largely unexplored.

Our previous work quantified patterns of within and TGP at the

phenotypic level in multiple clones of Daphnia ambigua from lakes in

Connecticut, USA. We found that Daphnia respond to initial expo-

sure to predator cues by shifting life history to mature slower and

produce less embryos compared to the transgenerational change

(Walsh et al., 2015). We classify these life history responses that

occur during development as “within-generation plasticity.” We also

found that Daphnia exposed to predator cues programmed future

generations for faster development. Such transgenerational

responses were apparent two generations following cue removal

(Walsh et al., 2015). That is, life history differences between parental

Daphnia that were and were not exposed to predator cues were still

observed in the grand-offspring. These patterns of transgenerational

life history plasticity are correlated with shifts in methylation (Schield

et al., 2016). More importantly, phenotypic experiments have

revealed extensive variation in the direction and magnitude of phe-

notypic responses to predator cues within and across generations.

Such variation in these two forms of plasticity provides the raw

material to test for variation in gene expression programmes within

and across generations. While our previous study (Walsh et al.,

2015) measured life history traits, the current study complements

previous work through the addition of gene expression analyses,

thus providing new insight into the gene regulatory basis of these

responses to environmental cues.

Here, we tested the influence of predator chemical cues on the

patterns of gene expression within and across generations in a single

clone of D. ambigua. We reared Daphnia in the presence and

absence of fish chemical cues in first-generation individuals and

tracked shifts in gene expression across two additional asexual gen-

erations. Importantly, the clone of Daphnia used in these experi-

ments responds to predator cues by strongly programming future

generations for rapid development (i.e., strong TGP) but exhibits

weak within-generation plasticity (Walsh et al., 2015). These pheno-

typic data stem from our previous work (Walsh et al., 2015) and

thus set the foundation for comparisons with gene expression-based
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responses over multiple generations. Given these known divergent

phenotypic responses to predator cues within and across genera-

tions for this clone, we predicted that the number genes that are dif-

ferentially expressed across generations would exceed those that are

differentially expressed within the first generation. Comparisons

between patterns of predator-induced within- and TGP in gene

expression responses will allow us to determine whether Daphnia

couple within- and TGP by altering the expression of the same sets

of genes, or whether these two forms of plasticity correspond with

expression of distinct sets of genes.

2 | MATERIALS AND METHODS

2.1 | Empirical experimental design

We used a single clone of D. ambigua from Dodge Pond in Connecti-

cut, USA (Post, Palkovacs, Schielke, & Dodson, 2008). In June 2013,

we isolated ephippia from a sediment sample that was originally col-

lected via an Ekman grab in 2009. Upon hatching, cultures from this

clone were maintained in 250-ml glass jars for several months prior

to the start of the experiments. During this time, Daphnia cultures

were maintained at moderate densities (<60 adults/L) and provided

with fresh media and algae weekly. It is important to note that this

clone of Daphnia reproduces asexually under benign conditions and

reverts to sexual reproduction when stressed. However, all Daphnia

were propagated asexually in the experiments described below.

Daphnia rearing experiments, and all molecular laboratory experi-

ments, were conducted at the same times and in parallel where pos-

sible to minimize experimental variation.

Our experimental approach consisted of rearing the focal clone

of Daphnia in a common-garden setting for two generations

(Fig. S1), followed by three generations of experimental manipula-

tion (Figure 1). To initiate the multiple generations of common-

garden rearing, we isolated 30 adults from existing stock cultures

and placed each adult in separate 90-ml containers containing

COMBO media (Kilham, Kreeger, Lynn, Goulden, & Herrera, 1998)

and specified, nonlimiting quantities of green algae (Scendesmus

obliquus; concentration 0.8 mg 9 C L�1 9 day�1). For each isolated

adult, a single neonate was immediately pulled from the first asex-

ual clutch and these neonates were moved to new 90-ml contain-

ers containing the same media and algae; these individuals

represent the first common-garden generation. All individuals were

transferred to fresh media and algae every day and were reared

at 21°C and a 14-hour:10-hour light:dark schedule. To initiate the

second common-garden generation, we collected neonates from

the second clutch of each replicate jar and these offspring were

again transferred to fresh media and algae daily (see diagrammed

design in Fig. S1).

Our experiment began with third-generation laboratory born

individuals. On day 1 of the experiment, we collected all neonates

that were born over the previous 12 hr from each of the parental

jars. This yielded ~180 newly-born Daphnia from the third clutch or

later of the second-generation laboratory reared parents and all

neonates were placed into 250-ml jars containing COMBO media at

a density of 40–48 Daphnia/L, or 18 jars with 10 Daphnia per jar

(Kilham et al., 1998). Each jar was randomly allocated to one of two

treatments: (1) predator exposure during the first generation fol-

lowed by two generations in the absence of predator cues (i.e., gen-

eration 1 = P, generation 2 = PN, generation 3 = PNN; Figure 1), or

(2) three generations in the absence of predator cues (i.e., generation

1 = N, generation 2 = NN, generation 3 = NNN). All Daphnia were

transferred to fresh media, algae and kairomones (see below details

of kairomone collection) daily. We monitored jars daily for matura-

tion (i.e., release of first clutch into the brood chamber) and for the

production of new clutches. Based upon previous work (Walsh &

Post, 2011, 2012), we estimated that 10 days were needed for

Daphnia to release their second clutch. We thus initiated the second

experimental generation after 10 days of exposure to predator cues.

This experimental generation was again initiated by collecting new-

born individuals under the same conditions described above. The

third experimental generation was collected and reared in this same

manner. After collecting neonates to initiate the second and third

experimental generations, all adults were flash-frozen (in liquid nitro-

gen) for the subsequent RNAseq analyses. Daphnia from the third

Generation 1 Generation 2 Generation 3
Initial exposure to cue

‘‘P’’
Cue removal

‘‘PN’’ ‘‘PNN’’

Predator cue No 
predator cue

No 
predator cue

x30 x30 x30 x30 x30 x30 x30 x30x30

1 2 3 1 2 3 1 2 3

3 replicates/generation, 30 individuals/replicate

F IGURE 1 Experimental design. A clonal generation representing
the third common-garden generation of Daphnia ambigua was
exposed to predator cues (Generation 1; “P” treatment). A single
neonate from the second clutch was transferred into a new jar
(Generation 2). A neonate was then collected from Generation 2 at
10 days after initiation and placed in a new jar (Generation 3).
Generations 2 and 3 were not exposed to any additional predator
cues (“N” treatments), so any differentially expressed genes in these
generations are a product of transgenerational plasticity stemming
from the initial predator cues in Generation 1. RNAseq libraries were
prepared from three replicates per generation, with 30 individual
Daphnia composing each replicate. In addition to the predator cue
removal experiment shown above (P, PN, PNN generations,
respectively), a second control experiment was conducted in an
identical manner only differing in the absence of any predator
exposure (N, NN, NNN generations, respectively) [Colour figure can
be viewed at wileyonlinelibrary.com]
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experimental generation were frozen following 10 days of common-

garden rearing.

2.2 | Kairomone collection

COMBO medium conditioned by the presence of planktivorous fish

was collected daily from a tank containing 2 redbreast sunfish (Lepo-

mis auritus; ~3 cm in total length) in 130 L of water. Each day, media

containing fish chemical cues was filtered using membrane filters

(47 mm diameter, 0.45 lm mesh) and added at a concentration of

0.0025 fish/L to the predator treatments. Injured Daphnia emit

chemical cues that contribute to the magnitude of phenotypic

response to predation (Laforsch, Beccara, & Tollrian, 2006). We thus

added filtered, macerated Daphnia (100 Daphnia/L) every day to the

appropriate predator treatments to ensure that our predator treat-

ments contained both fish kairomones and Daphnia alarm cues.

2.3 | RNA isolation, library preparation and
sequencing

We extracted RNA using the Zymo Research Duet Kit from snap-

frozen samples. Each generation included three biological replicates,

with each replicate comprised of 30 clonal Daphnia individuals (Fig-

ure 1). Appropriate amounts of RNA were not available from single

individuals. We pulled 30 individuals per replicate for the purposes

of library construction and sequencing, as all individuals have iden-

tical genetic backgrounds. A similar pooling approach has also been

used in other studies of Daphnia differential gene expression (e.g.,

Roy Chowdhury et al., 2015; Soetaert et al., 2007). Isolated RNA

was quantified using a Qubit fluorometer (Invitrogen), and mRNA-

seq libraries were constructed using Illumina TruSeq library kits. A

total of 3 lg of total RNA from each replicate (representing a pool

of 30 individuals) was used for RNAseq library preparation. Each of

these samples was uniquely indexed, and all 18 individual libraries

were multiplexed into a single, pooled library and sequenced on a

single Illumina MiSeq run using 150-bp paired-end sequencing

reads.

2.4 | Assessing differential gene expression

Raw Illumina RNAseq reads were demultiplexed by index and quality

trimmed using TRIMMOMATIC v. 0.36 (Bolger, Lohse, & Usadel, 2014)

with default settings. We used the BWA MEM algorithm v. 0.7.13 (Li &

Durbin, 2009), with default settings, to map quality trimmed reads to

the complete annotated transcript set of Daphnia pulex (Colbourne

et al., 2011) obtained from ENSEMBL. On average, about 70% of

trimmed reads mapped to the reference genome transcript set. Raw

gene expression counts were estimated by counting the number of

reads that mapped uniquely to a particular annotated transcript using

SAMTOOLS v. 1.3.1 (Li et al., 2009). Raw expression counts were then

normalized using the TMM normalization method in EDGER (Robinson,

McCarthy, & Smyth, 2010; Robinson & Oshlack, 2010), and all sub-

sequent gene expression analyses used these normalized data. Using

these normalized data, we identified genes that were significantly

differentially expressed between treatments by conducting pairwise

tests between replicated time point samples using an exact test of

the binomial distribution estimated in EDGER (Robinson et al., 2010),

integrating both common and tagwise dispersion. To control for any

responses that may be attributed to the experimental design, we

only considered expression differences between experimental and

control treatments within each generation (i.e., P vs. N, PN vs. NN

and PNN vs. NNN). All genes with evidence of differential expres-

sion at an FDR value ≤0.05 were considered significantly differen-

tially expressed between treatments. Significantly differentially

expressed genes were visualized across all samples as heat maps that

were generated in R (R Development Core Team, 2008) with genes

clustered by expression pattern similarity using the R-package VEGAN

(Dixon, 2003); gene expression pattern clustering was calculated

using average linkage hierarchical clustering based on Bray–Curtis

dissimilarity matrix (Figures 2b,c, 5 and 6). We also used principle

component analysis (PCA; using core functions in R) to identify the

degree to which patterns of RNAseq variation could differentiate

between generations and individuals by comparing the same normal-

ized gene expression data for all samples (using a singular value

decomposition of expression matrix). Significantly differentially

P

PNN

N

NNN

PN NN

48

223
170

P

P
N N

N

N
N

NP
N

N N

(a)

(b)

(c)

(d)

Gen. 1

Gen. 2

Gen. 3

1 2 3 1 2 3 1 2 3 11 22 33 1 2 3Rep:

P vs. N

43 5 12197 49

PN vs. NN PNN vs. NNN

Gen:

3210–1

z-score

F IGURE 2 Analysis of gene expression (RNAseq) changes in
response to predator cues. (A) Numbers of significantly differentially
expressed genes between the experimental and control replicates in
each generation. (B) Patterns of gene expression for 48 genes
differentially expressed between first-generation treatments (P vs.
N). (C) Patterns of expression for 223 genes that differ significantly
in expression between second-generation treatments (PN vs. NN).
For B–C, lighter blue colours indicate high level of expression, while
darker blue indicates low expression (this gradient is based on
normalized count values); gene expression profiles are clustered by
similarity. (D) Significantly differentially expressed genes that overlap
between generations. There was no gene overlap between
generation 1 (P vs. N) and generation 3 (PNN vs. NNN) [Colour
figure can be viewed at wileyonlinelibrary.com]
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expressed genes that overlap between generations were visualized

in a Venn diagram (Figure 2d). To test whether the overlap of gene

sets from different generations was more than expected by chance,

we conducted a hypergeometric test using the STATS package in R.

2.5 | Analyses of trends in expression shifts and
biological interpretations

Significantly differential genes were annotated using BLAST2GO v3.3.4

(Conesa & G€otz, 2008; Conesa et al., 2005; G€otz et al., 2011) and

ENSEMBL BIOMART (Kinsella et al., 2011). From the BLAST2GO annotation

outputs, we grouped genes that were functionally similar and associ-

ated with traits including digestive function, reproductive function,

epigenetic modifications and proteolysis. Sequence IDs were then

converted to DAPPUDRAFT IDs using the D. pulex gene annotation

list from ENSEMBL; these IDs were then used to assign Gene Ontology

(GO) term identifiers. We performed GO enrichment analyses (Mi

et al., 2016) to determine if significantly differentially expressed

gene sets were enriched for particular functional categories of genes

(Ashburner et al., 2000). Because our annotations were based on

genes orthologous to D. pulex, we minimized bias in the GO enrich-

ment analysis by including a background of only the genes we

observed as expressed in any of our D. ambigua experiments. We

considered GO term categories as significantly enriched if the ratio

test resulted in a Bonferroni-corrected p-value ≤.05. Enriched GO

terms were summarized by removing redundancies using REVIGO

(Supek, Bo�snjak, �Skunca, & �Smuc, 2011) with allowed similarity of

terms set to 0.1.

3 | RESULTS

3.1 | Gene expression analyses

An average of 285,576 reads was mapped for each replicate. The

numbers of raw reads obtained per library together with read mapping

statistics are provided in Table S1 in the Supporting Information. Ini-

tial exposure to predator cues was associated with 48 significantly dif-

ferentially expressed genes between experimental and control

treatments in generation 1 (P vs. N; FDR ≤ 0.05). Following predator

cue removal, we observed 223 differentially expressed genes in gener-

ation 2 (PN vs. NN), and 170 differentially expressed genes in genera-

tion 3 (PNN vs. NNN; Figure 2a). Sets of responsive genes in each

generation were mostly distinct; the data for generation 1 shared only

five responsive genes that were differentially expressed with the pat-

terns observed in generation 2, and zero genes with generation 3 (Fig-

ure 2d). In contrast, of 223 responsive genes in generation 2, 121

(54%) were also differentially expressed in generation 3 (PNN vs.

NNN; Figure 2d). Hypergeometric tests on the overlap revealed that

the overlap between generations 1 and 2, as well as the overlap

between generations 2 and 3, were significant (p values of

1.77 9 10�236 and 2.06 9 10�05, respectively). While the results of

the hypergeometic test indicated that proportions of overlapping

genes were greater than expected at random, it is notable that the

vast majority of differentially expressed genes were distinct, consider-

ing the hypothesis that they may indeed be entirely the same set.

We conducted a PCA to further explore patterns of gene expres-

sion within and across generations (Figure 3). The first principal com-

ponent (PC1) explained 90.7% of the variance and clearly separated

the control and experimental treatments in generation 2 and 3 (Fig-

ure 3). PC1 therefore accounts for transgenerational shifts in gene

expression related to predator cue exposure. PC2 explained an order

of magnitude less variation (9.3%) and primarily separated generation

1 (P & N) from generations 2 (PN & NN) and 3 (PNN & NNN); these

results suggest some of the shifts in gene expression between genera-

tion 1 vs. generations 2 and 3 were similar in both the control and

experimental treatments (Figure 3). However, it is important to note

that none of these differences in gene expression across generations

within control samples (e.g., N, NN, NNN) were statistically significant

based on pairwise analyses of gene expression, and our analyses of

gene expression in experimental samples take into account any such

shift through comparisons with these negative controls.

Gene expression patterns tended to be consistent across all

three biological replicates per generation, with the exception of a

single replicate sample from the third experimental generation (PNN,

replicate 1; Figure 2c). Gene expression patterns in this particular

sample were more similar to those in the negative control (Fig-

ure 2c). Our PCA further confirmed this sample as having a unique

replicate-specific transgenerational response compared to the other

N

P

PN

PNN
NNNNN

Standardized PC1 (90.7%)

0

67

68 70

6–

–

S
ta

nd
ar

di
ze

d 
P

C
2 

(9
.3

%
)

67

3

3

3

3

3
3

2

2

2

2

2 2

1

1

11

1

1

F IGURE 3 Principle component analysis analysis of gene
expression profiles for 218 genes that differ in expression between
second-generation treatments (PN vs. NN). Normal data ellipses
were drawn for each group using 0.98 as the size of the ellipse in
Normal probability. Red-shaded ellipses represent control groups (N,
NN and NNN), while blue-shaded ellipses represent the experimental
group (P, PN and PNN). Numbers (1, 2 and 3) within groups
represent the replicates associated with Figure 2 [Colour figure can
be viewed at wileyonlinelibrary.com]
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two PNN treatment replicates, as this sample clustered with control

samples (with NN and NNN replicates).

3.2 | Gene function

To dissect the biological relevance of transgenerational shifts in gene

expression, we grouped responsive sets of genes into functional cate-

gories to identify how gene expression shifts might be related to trans-

generational phenotypic shifts, and how within- vs. transgenerational

transcriptional responses differ. Comparisons of GO terms for differen-

tially expressed gene sets per generation highlight the uniqueness of

within-generation responsive gene functions (P vs. N response), and

the broad similarities of functional categories of responsive genes in

generations 2 and 3 (PN vs. NN and PNN vs. NNN; Figure 4). Within-

generation responsive genes were associated with few enriched GO

terms, all of which were related to lipid transport and lipid transporter

activity (Figure 4a,b); none of these functional classes were shared with

across-generation responsive genes.
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In contrast to limited responses in the first generation, responses

in generations 2 and 3 show major shifts in the functional categories

of genes responsive to predator cues, including the up-regulation of

genes involved in cellular amide metabolism, translation, ribosome

structure, ribosome biogenesis, biosynthesis and cellular metabolism

(Figure 4a,b). GO terms enriched in transgenerational responsive

gene sets were highly similar and shared many biological process

and molecular function terms. While broadly overlapping, genera-

tions 2 and 3 differed in the greater response of genes related to

cellular amide metabolism in generation 2, and the greater relative

abundance of responsive genes related to translation and ribosomes

in generation 3 (Figure 4). The only nonoverlap identified between

generations 2 and 3 was in cellular component GO terms, indicating

that cytosolic ribosomes are enriched in generation 2, while riboso-

mal subunits are enriched in generation 3 (Figure 4a—Cellular Com-

ponent panel); this difference, however, may have been driven by

related GO terms being derived from many of the same up-regulated

genes. For these seemingly different categories, original GO enrich-

ment terms were identical but with differing p-values (Tables S2 and

S3), and the difference in results is due largely to the differential

summarization of terms by REVIGO, which employed permissive

thresholds for similarity (c = 0.10) for visualization purposes

(Tables S4 and S5). Thus, functional classes of responsive genes in

generations 2 and 3 are, in fact, highly overlapping.

To complement our GO analyses and further dissect the links

between gene expression and phenotypes associated with TGP, we

broke down sets of responsive genes into functional categories

linked to key phenotypic or molecular aspects of plasticity, including:

epigenetic modification, reproduction, exoskeleton structure, diges-

tion, and ribosomal protein synthesis (Figures 5 and 6). Among genes

relevant to epigenetic modifications, we identified a single respon-

sive gene encoding a histone deacetylase (HDAC; a transcriptional

silencer; Braunstein, Rose, Holmes, Allis, & Broach, 1993) that was

variably expressed across treatments, and only significantly differen-

tially expressed between experimental and control treatments in

generation 3 (PNN vs. NNN; Figure 5); we provide plausible explana-

tions for this observation in the discussion.

Genes encoding peptidases and other digestive enzymes exhibited a

split pattern, with some genes in this class being responsive upon initial

cue exposure (P vs. N), and others showing transgenerational responses.

Genes that were significantly responsive exclusively between P and N

were peptidases with serine-type endopeptidase activity (i.e., chy-

motrypsin and trypsin) or metalloendopeptidase activity (i.e., zinc
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metalloase; Figure 5 and Fig. S2). Conversely, genes exclusively respon-

sive in generations two and three (PN vs. NN and PNN vs. NNN) were

carboxypeptidase D, peptidases functioning in cysteine-type endopepti-

dase activity (i.e., cathepsin and caspase) and digestive enzymes func-

tioning in hydrolase and cellulase activity (i.e., Cel7A fusion and

lysosomal alpha-glucosidase-like, respectively; Figure 5 and Fig. S1).

Up-regulation of genes involved in reproductive function (i.e.,

vitellogenins; VTG) was primarily associated with the within-genera-

tion response. Of the 48 responsive genes in generation 1 (Figure 2b),

five encoded proteins associated with VTG were associated with

within-generational responses (including VTG-like isoforms X2, VTG2,

and vitelline membrane outer layer 1 homolog), and only a single gene

annotated as “VTG-partial” was responsive in the third-generation

treatment. GO enrichment analysis showed overrepresented genes

involved in biological process terms for lipid transport and molecular

function for lipid transporter activity (Figure 4), which is consistent

with our finding of up-regulation of VTGs in generation 1. Genes

encoding exoskeletal proteins were more responsive across genera-

tions. Multiple exoskeleton-associated genes, including genes involved

in the structural constituent of the cuticle, were exclusively differen-

tially expressed between experimental and control treatments in gen-

erations 2 and 3 (PN vs. NN and PNN vs. NNN), while only a single

gene (peritrophic matrix) involved in chitin binding was significantly

responsive in the first generation (P vs. N; Figures 5 and Fig. S1).

Among all responsive gene sets, the most pronounced example

of a transcriptional programme of functionally related genes exclu-

sively linked to TGP was that of ribosomal protein-encoding genes;

these genes were up-regulated in response to predator cues in gen-

erations 2 and 3 (Figure 6). Of the 223 significantly differentially

expressed genes in generation 2 (PN vs. NN; Figure 2c), 52 (23%)

were annotated as ribosomal protein components. Similarly, 40

(23%) of 170 genes in the third generation were also annotated as

ribosomal protein components (Figure 6).

4 | DISCUSSION

Our results provide compelling evidence that within- vs. across-gen-

eration responses may be driven by distinct gene expression pro-

grammes, indicating these programmes are likely regulated

independently. Interest in the evolutionary drivers of TGP has devel-

oped slowly and largely in parallel of the study of within-generation

plasticity. Initially, theory predicted that similar ecological conditions

favour the evolution of plastic responses that occur within- and

across generations (Day & Bonduriansky, 2011; Ezard, Prizak, &

Hoyle, 2014; Fischer, Taborsky, & Kokko, 2011; Hoyle & Ezard,

2012; Jablonka, Lachmann, & Lamb, 1989, 1992; Kuijper, Johnstone,

& Townley, 2014; Levins, 1968; Shea, Pen, & Uller, 2011). It is also

hypothesized that varying environmental conditions that are consis-

tent between parent and offspring generations are expected to

favour simultaneous increases in phenotypic plasticity within and

across generations (Ezard et al., 2014; Hoyle & Ezard, 2012), but this

idea has recently been challenged. It is now becoming clear that

organisms exhibit strong patterns of within-generation plasticity or

across-generation plasticity but not both (Donohue & Schmitt, 1998;

Schmitt et al., 1992; Walsh et al., 2015). Additionally, new theory

has identified ecological conditions that may independently select

for within- vs. TGP (Kuijper & Hoyle, 2015; Leimar & McNamara,

2015; Uller, English, & Pen, 2015b). These frameworks predict that

high temporal variability selects for the evolution of within-genera-

tion plasticity, while low temporal variability (or high temporal stabil-

ity) and slow rate of environmental change favours enhanced TGP.

The decoupling of within- and across-generation responses, in turn,

predicts that divergent ecological conditions favour divergent pat-

terns of plasticity, and even divergent molecular mechanisms under-

lying plasticity.

Based upon recent theory and empirical work (Walsh et al.,

2015, 2016) illustrating a decoupling and even antagonism of within-

vs. across-generational phenotypic responses, it follows logically that

within and across-generation phenotypic responses involve divergent

programmes of gene expression and even fundamentally different

sets of responsive genes with distinct functions. Additionally, tran-

scriptional responses (e.g., the number of responsive genes) are

expected to be generally proportional to phenotypic responses

within- vs. across generations. For example, lineages that exhibit

strong patterns of TGP are expected to show enhanced transcrip-

tional responses across generations. To test these predictions, we

examined transcriptional responses to predator cues using a clone of

Daphnia that is known to exhibit strong TGP (Walsh et al., 2015,

2016). We expected to observe more extensive shifts in gene

expression across generations (vs. within), especially for genes

involved in phenotypically responsive life history traits (i.e., program-

ming offspring for faster rates of development and production of lar-

ger clutch sizes; Walsh et al., 2015).

Results of our gene expression analyses indicate that highly dis-

tinct gene expression programmes may underlie within- vs. across-

generation responses, and that the magnitude of transcriptional

responses appears to be linked to the magnitude of phenotypic

responses. In this particular Daphnia lineage known to exhibit strong

TGP responses (Walsh et al., 2015), we found small within-genera-

tion transcriptional response upon initial exposure to predator cues

(P vs. N) followed by a pronounced transgenerational transcriptional

response across subsequent generations (i.e., PN vs. NN and PNN

vs. NNN). Many sets of responsive genes were also linked to known

phenotypic responses that have been shown to coincide with expo-

sure to predator cues, including developmental rates, reproductive

rates and shifts in growth (Riessen, 1999; Stibor, 1992; Walsh et al.,

2015; Figure 5). An “informational” perspective might explain why

organisms exhibiting strong TGP maintain adaptive responses to

predator cues, even when the predator risk has ceased (Dall, Giral-

deau, Olsson, McNamara, & Stephens, 2005). Assuming the evolu-

tion of mechanisms that allow different sources of information to be

weighted differently, selection should favour some sources of infor-

mation more than others (Dall et al., 2005). The overall pattern sug-

gests that this Daphnia clone appears to respond more to the

environment experienced by their mother/grandmother rather than
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their own environment, which is logical if direct predation risk is

likely to be experienced infrequently (Dall et al., 2005).

Finally, multiple aspects of our results indicate a pattern of

“decay” in transgenerational programming in later generations (Fig-

ures 2c and 3). That is, the number of differentially expressed genes

decreased between generations 2 and 3. Such a trend is consistent

with the decay in inherited epigenetic programming of subsequent

generations, supporting the view that TGP is driven by epigenetic

mechanisms (Kuijper & Hoyle, 2015; Leimar & McNamara, 2015;

Uller et al., 2015a).

4.1 | Phenotypic responses within- vs. across
generations

4.1.1 | Within-generation patterns of gene
expression

Our data indicate that predator cues lead to consistent within-gen-

eration up-regulation of genes related to digestive function, including

genes encoding the enzymes trypsin and chymotrypsin (serine-type

endopeptidases) as well as genes associated with serine-type

endopeptidase activity, metaloendopeptidase activity, and threonine-

type endopeptidase activity. In addition to genes associated with

peptidase activity, within-generation responses were also observed

for genes that represent major precursor proteins involved in the

production of egg yolk and embryo development (VTGs). Trypsin

and chymotrypsin are known to represent major digestive proteases

in the gut of D. magna (von Elert et al., 2004). D. pulex have been

shown to respond to metabolic shifts due to colder temperatures by

down-regulating trypsins, chymotrypsins and carboxypeptidases, and

up-regulating VTG (Schwerin et al., 2009). We observed up-regula-

tion of these enzymes, which may correspond with the need to

accommodate increased feeding rates to achieve increases rates of

growth and development and larger reproductive investment in

response to exposure to predator chemical cues (Riessen, 1999;

Stibor, 1992).

4.1.2 | Transgenerational patterns of gene
expression

Distinct changes in gene expression persisted for two generations

following predator cue removal. Transgenerational responses

included 223 significantly differentially expressed genes in the sec-

ond generation and 170 in the third generation (Figure 2a,c), with

an overlap of 121 responsive genes between these generations.

These transgenerational responsive genes outnumbered those that

were differentially expressed in generation 1 (i.e., within-generation

responses) by twofold to fourfold. Hypergeometric tests on these

areas of overlap (Figure 2d) were performed to determine whether

the overlap in gene sets was more than expected by chance. In

both cases, the overlap between generations 1 and 2 and the over-

lap between generations 2 and 3 were significant with p-values

<.05. Despite this overlap, the degree to which within- and

transgenerational responses were largely distinct, in terms of the

genes that were differentially expressed, is notable. These contrast-

ing gene expression responses within- and across generations are

consistent with new theory regarding the decoupling of these two

forms of plasticity (Kuijper & Hoyle, 2015; Leimar & McNamara,

2015; Uller et al., 2015b). Our previous phenotypic work showed

that parents respond to initial exposure to predator cues by pro-

gramming offspring for earlier maturation and the production of lar-

ger clutch sizes (Walsh et al., 2015). Although within-generation

responses focused on up-regulating a small set of genes related to

reproductive efforts (Figures 4b and 5), across-generation responses

included many genes linked to components of the exoskeleton,

ribosomal proteins, carboxypeptidase D and other peptidases func-

tioning in cysteine-type endopeptidase activity, hydrolase activity

and cellulose activity (Figure 5). Chitin metabolism has been exten-

sively studied in insects and in order for development to occur,

cuticles forming the exoskeleton need to be continuously replaced

during ecdysis. The ability for an arthropod to undergo morphogen-

esis is completely dependent on the constant destruction and

reconstruction of chitin-containing structures (Merzendorfer &

Zimoch, 2003). Therefore, increasing the transcription of proteins

involved in the cuticle in Daphnia is also likely indicative of more

frequent moulting.

Perhaps the most remarkable transcriptional evidence for a TGP-

specific gene expression programme is the observed up-regulation of

62 responsive genes encoding ribosomal proteins associated with

60S and 40S ribosomal subunits (Figure 6). Despite a sensible expla-

nation for this observation as being linked to an increase in transla-

tion, previous studies have shown increased transcription of

ribosomal proteins without increased production of ribosomes (Sun,

Li, & Wang, 2015; Wang et al., 2013). Proteomic data gathered on

D. magna in response to predator cues show similar, but less

extreme responses in ribosomal protein up-regulation (Otte, Schrank,

Frohlich, Arnold, & Laforsch, 2015). Furthermore, it is known that

ribosomal proteins have functions outside of ribosome assembly and

translation in response to stress (i.e., oncoprotein suppression,

immune signalling and development; Zhou, Liao, Liao, Liao, & Lu,

2015). Although the functional significance of up-regulation of the

ribosomal protein-coding genes observed in the current study

unclear, it is notable that this class of responsive genes was tightly

linked to TGP, and a greater understanding of this response may

provide unique insight into TGP response programmes.

4.1.3 | Stability of transmission and epigenetic
decay

Our understanding of the mechanistic basis of plasticity, especially

TGP, has been historically limited. A major difficulty is that several

nonexclusive mechanisms may underlie patterns of TGP (e.g., mater-

nal effects, histone modification, RNA interference, DNA methyla-

tion; Bossdorf, Richards, & Pigliucci, 2008; Jaenisch & Bird, 2003;

Vandegehuchte & Janssen, 2011). Environmentally induced epige-

netic shifts in DNA methylation can influence gene expression
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patterns (Kalisz & Purugganan, 2004; Turck & Coupland, 2014)

including TGP in gene expression (Boyko et al., 2010; Carone et al.,

2010; Kooke et al., 2015), and variation in patterns of DNA methyla-

tion among natural populations has been correlated with shifts in

trait values and trait plasticity (Herrera & Bazaga, 2010; Herrera,

Pozo, & Bazaga, 2012; Kooke et al., 2015; Zhang, Fischer, Colot, &

Bossdorf, 2013). Evolutionary theory connects environmental varia-

tion with the expression of TGP by predicting that evolutionary

divergence in TGP may be linked to differences in the patterns and

duration of environmentally induced epigenetic effects (i.e., differ-

ences in rate of “epigenetic resetting,” (Kuijper & Hoyle, 2015; Lei-

mar & McNamara, 2015; Uller et al., 2015a). Additionally, our

previous study of genomewide methylation using the same clone of

D. ambigua used in the present study found evidence for significant

transgenerational shifts in genomic methylation patterns (Schield

et al., 2016). Collectively, available evidence supports DNA methyla-

tion as an important mechanism underlying both the transmission

and evolution of TGP.

Motivated by existing links between epigenomic modification

and TGP, we searched for evidence of predator cue responsive

genes related to epigenetic modification in generations 2 and 3.

We found distinguishable differences in HDAC mRNA expression

levels across treatments; HDAC is expressed consistently higher in

the “predator removal” treatments compared to controls (Figure 5)

and expression of HDAC differ significantly in generation 3 (PNN

vs. NNN). These transcriptional silencers (Braunstein et al., 1993)

are involved in the epigenetic modifications of histones required to

condense chromatin. We were somewhat surprised by this result,

as we did not expect this gene to be responsive only in later gen-

erations (i.e., generation 3) because we have previously shown

major epigenomic modifications resulting in shifts in genomic cyto-

sine methylation patterns in generations 1–2 upon predator cue

exposure (Schield et al., 2016). It is also notable that we observed

no significant changes in gene expression for DNA methyltrans-

ferases across generations and treatments, despite evidence for

shifts in methylation in response to predator cue exposure (Schield

et al., 2016). We believe the most likely explanation for these find-

ings is that HDACs and DNA methyltransferases do not necessarily

require shifts in transcription to undergo epigenetic shifts (Law &

Jacobsen, 2010; Vandegehuchte, Coninck, Vandenbrouck, Coen, &

Janssen, 2010). An alternative explanation for the lack of transcrip-

tional responses in genes encoding for epigenetic modifiers is that

these marks occur early in development (i.e., de novo methylation),

even as early as during embryonic development (Harris, Bartlet, &

Lloyd, 2012; Robichaud, Sassine, Beaton, & Lloyd, 2012), and

because our data were collected from adult individuals, we may not

have captured substantial latent signal of transcriptional regulation

of these genes.

Because our transcriptome sampling design included pooling 30

individuals per replicate, it remains an open question how much

variation in gene expression exists among individuals within a treat-

ment. Our pooled sampling design should tend to average variation

across individuals within a replicate, providing an underestimate of

among-individual variation. Within our pooled sampling design, gene

expression was highly replicable across treatments with the excep-

tion of one replicate in generation 3 (Gen: PNN, Rep: 1; Figure 2c);

this replicate more closely resembles the expression patterns of the

no-predator treatments (control group; Figure 3). A plausible expla-

nation for this replicate appearing more like the control group is

that the stability of the transfer of nongenetic inheritance is vari-

able (and/or unstable) in the generations following cue removal. In

other words, failure of the mechanisms promoting a transgenera-

tional transfer of information (i.e., epigenetic decay) could explain

this discrepancy in third-generation responses among replicates,

and also broadly explain shifts in TGP responses in later genera-

tions. However, more extensive tests need to be performed to con-

firm this possibility.

5 | CONCLUSION

We examined the influence of predator cues on patterns of gene

expression in a clone of D. ambigua. Our results revealed divergent

within- and transgenerational patterns of gene expression (Fig-

ures 2–6), as shifts in gene expression in response to predator expo-

sure were largely nonoverlapping within- and across generations

(Figure 2d). These contrasting gene expression programmes are cor-

related with previously measured differences in patterns of pheno-

typic plasticity within- vs. across generations in this clone (Walsh

et al., 2015). These complementary data collectively indicate that the

molecular mechanisms that underlie within- vs. trans-generation

plasticity are fundamentally distinct. Our results foreshadow that dis-

tinct molecular pathways determine the evolution of phenotypic

plasticity within and across generations. A key next step is to deter-

mine how natural selection operates on the gene expression pro-

grammes for within- and TGP in natural systems. Specifically, this

poses the intriguing questions of what tradeoffs there might be in

lineages with different phenotypic responses, and if these differ-

ences involve expression of fundamentally different sets of genes, or

if phenotypic differences instead stem from modulation based on

which generation experiences up-regulation of particular gene

expression programmes.
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