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Abstract
Purpose of Review Detecting gene flow between populations or species is a fundamental goal of population genetics and
speciation research and is also central for a thorough understanding of the demographic history of lineages. While population
genomic data offer an unparalleled opportunity to study gene flow and other evolutionary processes at high resolution, extracting
meaningful patterns from such large and complex datasets is rarely straightforward. Recent advances in both theory and
methodology have led to a number of newly proposed analytical tools and frameworks for inferring genome-wide patterns of
introgression and admixture that can more efficiently leverage population genomic data. Here, we provide an overview of several
recent contributions to the problem of estimating gene flow, discuss advantages and potential pitfalls to these approaches, and
provide an outlook for future developments.
Recent Findings Three prominent areas of recent research progress include (1) improving upon existing test statistics to detect
and measure gene flow, (2) developing efficient frameworks for demographic model testing, and (3) applying supervised
machine learning to identify introgressed loci across genomes. Over the past several years, contributions to these three areas
have greatly enhanced our ability to study gene flow at various scales (i.e., species, populations, and individual genomes). Here,
we highlight six relevant studies within these focal areas that represent particularly novel contributions to the goal of gene flow
estimation from genome-scale data.
Summary The inference of gene flow is a notoriously challenging statistical problem that is an integral component of population
genomic research. Our survey of the literature revealed a number of important recent contributions to this problem, from the
improvement of admixture tests to demographic model testing and inference of specific regions of the genome likely to have
crossed boundaries between populations and species. Although these studies represent only a sampling of the current literature,
their contributions, along with those from numerous studies in the expanding field of population genomics, are markers of
considerable progress in recent years toward addressing the issue of genomic inference of gene flow.

Keywords Migration introgression . Admixture . Hybridization . Next-generation sequencing

Introduction

Gene flow is an important evolutionary process that plays a
fundamental role in shaping genetic variation both within and
between populations and species. A number of recent
genome-wide investigations have revealed that gene flow is
pervasive in nature, and while expected to occur at some

frequency between closely related species [1–5], studies have
also found evidence of introgression between quite distantly
related taxa [6–8]. For example, one such study found evi-
dence of introgression and hybridization between two species
of fern that diverged ~ 60 million years ago (Turissini and
Matute 2017), which is slightly younger than the estimated
age of the primate ancestor [9]. Genomic evidence for gene
flow and introgression has been recovered in nearly all major
lineages that have been surveyed, including primates [10],
plants [11–13], reptiles [14–18], birds [19], insects [20], fungi
[21], and protists (e.g., oomycetes) [22].

While gene flow is a fundamental evolutionary process that
has shaped patterns of genetic diversity in many diverse taxa,
confidently inferring various measures of gene flow (i.e.,
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migration rates and introgressed individuals and loci) from
molecular data is often a challenging statistical problem.
Next-generation sequencing technology has enabled
genome-scale investigations of gene flow and its impact on
genetic variation and the process of speciation in nature, yet
many factors can prohibit or even mislead effective and effi-
cient estimates of gene flow from complex genome-scale pop-
ulation datasets. In recent years, a wealth of new approaches
have been proposed to address the factors that may confound
studies of gene flow. Here, we conduct a survey of the current
literature on the subject and highlight recent studies that have
implemented particularly interesting and novel strategies that
target three main aims: (1) improving the effectiveness of
admixture tests for genomic scans of introgression, (2) estab-
lishing efficient methods for demographic model testing, and
(3) using supervised machine learning to study introgression
and admixture. In the following sections, we provide a back-
ground and current perspective on the state of each of these
research areas and how recent advances in these areas are
increasing the feasibility and precision of studying gene flow
in natural populations using genomes.

Improving the Effectiveness of Admixture Tests

Genomic scans of population genetic statistics have been used
extensively as a strategy for detecting signatures of gene flow
between populations and species. First used to characterize
patterns of gene flow between early humans and
Neanderthals [23, 24], theD statistic [25] and its variants have
risen in prominence over the past decade for studying intro-
gression and admixture in a variety of contexts, including Old
and New world Native Americans [26, 27], canids [28], but-
terflies [29], brown and polar bears [30], oak trees [31], and
fungi [32].

The D statistic compares the observed and expected fre-
quencies of two nucleotide patterns occurring across four in-
dividuals, each sampled from four different closely related
populations: BABBA^ and BBABA.^ From left to right, the
ABBA or BABA patterns are ordered based on the population
sampled from one to four (Fig. 1), and the ancestral state of the
nucleotide is determined based on the allele state of the indi-
vidual sampled from the fourth outgroup population (i.e., the
fourth individual always possesses the BA^ state in both
ABBA and BABA patterns). The ABBA pattern represents
a site for which the individual sampled from the first popula-
tion shares the same ancestral allelic state as the fourth popu-
lation (BA^), while the derived allele BB^ is found in the
second and third populations (Fig. 1a, left). For the BABA
pattern, the first and third individuals share the derived allele
state BB,^ while the ancestral state BA^ is found in the second
individual (Fig. 1a, right). Due to random coalescence of gene
lineages in ancestral populations, the frequency of ABBA and
BABA site patterns is expected to be equal under the null

hypothesis of no gene flow (Fig. 1a). Deviations from this
expectation are often taken as evidence of introgression be-
tween one of the two ingroup populations (first or second
population) and the outgroup taxa (Fig. 1b). This framework
has also recently been extended to the analyses of five popu-
lations [34].

Although the D statistic can be a powerful method for
detecting gene flow, recent analyses have revealed several
limitations [e.g., 26, 33]. First, the D statistic is designed to
detect signatures of gene flow, rather than to quantify it, and
the nonlinear relationship between D and the fraction of
introgressed individuals within a population suggests that D
may be a biased estimator of migration (see Fig. 1 of Martin
et al. [35]). Second, the D test statistic is also likely to be
artificially inflated when it is used to infer introgression in
genomic regions with low relative diversity, indicating that it
may be unreliable in some contexts for identifying
introgressed loci from individual loci affected by linked selec-
tion; for example, it is more appropriate to use D to measure
genome-wide excess of shared derived alleles (see Fig. 2 of
Martin et al. [35]). Lastly, most standard implementations of
the D statistic are unable to differentiate between admixture
and ancestral population structure, which can also yield un-
equal ABBA-BABA site pattern frequencies that can mimic

Fig. 1 Population tree models and genealogical examples used to
demonstrate recent improvements to admixture tests based on the D
statistic test. Circles represent coalescent events, and stars indicate
mutations from the ancestral state BA^ to the derived state BB.^ Null
model (no gene flow) with example genealogies that can give rise to
the ABBA and BABA patterns is shown in (a). Alternative migration
model that can cause unequal ABBA vs. BABA frequencies is shown
in (b), and an example of the ancestral structure model of [33] that can
yield similar patterns is shown in (c)
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signatures of gene flow [25]. The D statistic is therefore likely
to be ineffective at detecting gene flow using low-coverage
genome sequencing and/or ancient DNA samples. To circum-
vent this issue, studies have typically down-sampled their data
to include only a single base from one individual per popula-
tion, thus reducing the information content from their data.
Despite the apparent limitations and potential biases intro-
duced by D statistics in certain contexts, they remain a prom-
inent and useful family of metrics for inferring gene flow.

Distinguishing Between Ancestral Population Structure
and Admixture

The power of theD statistic to reject the null model of no gene
flow hinges on the assumption that, when present, admixture
between one of the two populations with the outgroup is the
sole cause of unequal ABBA-BABA site frequencies
(Fig. 1a, b). However, other processes can also drive such
patterns, including subdivision in ancestral populations,
which has been shown to generate asymmetric gene trees
using theory and empirical analyses [33, 36], which in turn
can yield misleading evidence of gene flow [25]. Under these
scenarios, ancestral structure can cause one of the two popu-
lations to exhibit greater than expected similarity with the
outgroup population, even in the absence of admixture
(Fig. 1c). Under simple models of ancestral structure, analyz-
ing the doubly conditioned frequency spectrum (dcfs, i.e.,
conditioning on the allele state of an outgroup) can help dis-
tinguish admixture from ancestral subdivision [37]; however,
more recent studies have shown that the dcfs could not distin-
guish between these two hypotheses under more complex sce-
narios likely to occur in nature [38]. In a recent study,
Theunert and Slatkin (2017) [39] introduce two key improve-
ments to these site-based tests that incorporate additional in-
formation from the unconditional site frequency spectrum
(SFS) and linkage disequilibrium (LD) decay ratios to detect
admixture.

In Theunert and Slatkin (2017), the authors first recapitu-
late the findings of previous studies [e.g., 37], demonstrating
that a model of admixture (i.e., Fig. 1b here; Fig. 1A of
Theunert and Slatkin 2017) yields essentially the same expect-
ed trends in the dcfs as a model of ancestral structure (i.e.,
Fig. 1c here; Fig. 1A of Theunert and Slatkin 2017). These
results illustrate that the dcfs is unable to distinguish between
these twomodels of population divergence (Fig. 2 of Theunert
and Slatkin 2017). They also show that, unlike the dcfs, the
unconditional site frequency spectrum (ucfs) will exhibit par-
ticular distortions under the ancestral structure model and is
therefore useful for determining whether perturbations in site
frequency patterns are due to admixture or ancestral structure
(i.e., Fig. 3 of Theunert and Slatkin 2017). The authors then
compare the ucfs under both models using simulations and
empirical datasets collected from human populations in the

South Pacific, which provide evidence of the power of the
SFS for detecting admixture under complex demographic sce-
narios (Figs. 3 and SF5 of Theunert and Slatkin 2017).

These authors further investigate and compare the behavior
of LD decay (i.e., DEFINE HERE) under the two competing
models (i.e., admixture versus ancestral structure), finding that
gene flow can generate a unique signal when measuring the
ratio of LD between two sister populations (i.e., populations 1
and 2 in Fig. 1). Using simulations, the authors show that LD
decays more slowly when derived alleles in one of the two
sister populations have introgressed from the other through
gene flow (Fig. 4B of Theunert and Slatkin 2017). This pattern
is mirrored in their analyses of empirical human data from the
1000 Genomes Project [40], in which slower rates of LD decay
were observed at sites in one population that shared the derived
allele with Altai individuals (Fig. 6 of Theunert and Slatkin
2017). Taken together, these two approaches (ucfs and LD-
based comparisons) mark major improvements to the power
of SFS-based tests of admixture under complex models, and
the authors recommend leveraging both approaches to rein-
force inferences of admixture. These results also provide sim-
ulated and empirical evidence of the theoretical power of intro-
gression to generate LD in the genome. One limitation to the
broad usefulness of these approaches, however, is that LD-
based methods often require phased genomic data, and the
power of these approaches to distinguish admixture from an-
cestral structure is strongest when sites are closely linked to one
another. Future investigations including comparisons of these
methods under more complex models of gene flow, scenarios
involving population size changes, and methods to account for
evolutionary processes (e.g., genetic drift and natural selection)
are required to thoroughly understand how these admixture
tests behave under natural conditions.

Improving the Power of the D Statistic for Low-Coverage
Analyses

Reconstructing the demographic history of both modern and
ancient genomes has become a prominent approach for under-
standing the history of human populations [41], and the D
statistic has been used extensively for this purpose [e.g., 23].
Relevant to the study of ancient genomes are issues inherent to
the analyses of low-coverage genome data, which can be
error-prone and subject to poor quality base calls. In a recent
study, Soraggi et al. [42] address these concerns by increasing
the robustness of the ABBA-BABA test to high sequencing
error. In typical applications, the D statistic is computed by
sampling a single base from a single individual, and Soraggi
et al. [42] demonstrate that the power of the D statistic to
detect admixture from low-coverage data can be improved
by instead considering all reads from multiple individuals
within each population (i.e., Fig. 4 of Soraggi et al. 2017).
Furthermore, the authors apply type-error correction by
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adjusting allele frequency estimates as a product of genotype
probabilities (i.e., the likelihood of observing base b when the
true state is a; Eq. 6 and Fig. 5 of Soraggi et al. 2017). Another
valuable contribution of this study is a newly proposed ap-
proach to address admixture from Bghost populations^ (i.e.,
external populations not directly considered in the tree), which
can also confound inferences in other applications. The au-
thors show that correcting for external admixture can be ac-
complished by using estimates of the external migration rate
(α), although this requires reliable (or known) estimates of α
(i.e., Fig. 6 of Soraggi et al. 2017).

Efficient Methods for Demographic Model Testing

Reconciling theoretical predictions and models based on these
predictions with genetic sequence data has long been a core
focus of population genetics research, and recent years have
seen numerous studies that use model selection procedures to
evaluate demographic histories across a wide range of organ-
isms, including plants [e.g., 31, 42], arthropods [e.g., 43, 44],
fish [e.g., 45, 46], amphibians [e.g., 47, 48], squamates [e.g.,
14, 17, 18, 49, 50], birds [e.g., 51, 52], and mammals [e.g., 53,
54]. Estimating parameters and testing the fit of demographic
models using traditional, full likelihood-based methods (in-
cluding maximum likelihood estimation and Bayesian infer-
ence) are, however, often intractable for large genomic
datasets, and a substantial amount of recent work in the field
has been directed toward developing more efficient model-
based frameworks that readily scale to genomic data.

Approximate likelihood and diffusion-based methods have
both become popular approaches for testing demographic
model fit from multilocus genetic data [e.g., 55–59].
Diffusion-based methods, such as ∂a∂i [57], approximate the
joint (or multi-population) allele frequency spectra using dif-
fusion equations to test explicit hypotheses of population co-
divergence, expansion and bottleneck events, presence and
timing of gene flow, and modes of population divergence.
Coalescent-based hidden Markov models have also seen
widespread use for inferring demographic parameters, includ-
ing migration rates, using one or more whole-genome se-
quences [e.g., 60, 61, 62]. By considering the genealogical
history of each site as a Bhidden^ unknown state, these
methods are capable of modeling molecular evolution through
time and across the genome, providing estimates of coalescent
parameters (e.g., population sizes, migration rates) as well as
recombination rates. Given the large computational costs of
inferring complex demographic models withmany parameters
using large datasets, a number of recent model-based ap-
proaches have been designed for more efficient analysis of
genomic data using approximation methods [56, 63] or more
simplistic models of molecular evolution [64, 65]. Computing
full likelihoods for complex models can be intractable, and
thus methods such as approximate Bayesian computation

(ABC) and approximate likelihood methods use simulation
techniques to approximate the likelihood, rather than compute
it directly. ABC methods, in particular, have been leveraged
extensively in recent years for testing the fit of complex de-
mographic models involving migration, population size
changes, and other complex evolutionary scenarios [63,
66–69]. Approximate likelihood approaches have been com-
paratively less popular but have nonetheless been useful for
testing the fit of demographic models.

Approximate Likelihood Testing of Speciation Models
with Gene Flow

In a recent study by Jackson et al. [70], the authors present a
novel approximate likelihood-based method referred to as
Phylogeographic Inference using Approximate Likelihoods
(PHRAPL) to incorporate gene flow into demographic model
tests. Although this study is primarily focused on the use of the
method for species delimitation (i.e., the procedure of assigning
individuals to discrete populations or species), the methods
proposed by Jackson et al. [70] are fundamentally designed to
test the fit of molecular datasets to models of population or
species divergence that include or exclude gene flow. Due to
the complexity of introducing migration rates in demographic
models, PHRAPL compares the fit of empirically estimated
genealogical trees for a given dataset to simulated genealogical
distributions under different demographic models. The best
fitting demographic model is determined by identifying a mod-
el that yields a simulated distribution of gene trees that most
closely matches the empirical genealogies. The authors dem-
onstrate the utility of this approach on both simulated and em-
pirical datasets, and in nearly all scenarios explored in this
study, PHRAPL appeared to perform better than other ap-
proaches that do not account for models of gene flow. For
example, the authors show that another popular method,
Bayesian Phylogenetics and Phylogeography (BPP) [71, 72],
has a tendency to lump human samples into a single-population
model, while PHRAPL correctly delimited distinct human pop-
ulations (Fig. 5 of Jackson et al. 2017).

Given that nearly all other species delimitation methods
ignore gene flow, the approach of Jackson et al. [70] repre-
sents an important improvement in model-based approaches
for the delimitation of populations and species, although there
are several limitations inherent to this approach. Specifically,
PHRAPL uses gene tree estimates to compare the fit of
models, which can be highly unreliable when populations
are closely related, for example, and in cases such as these,
the authors suggest that PHRAPL may not be as powerful as
BPP for detecting genetically isolated populations. A common
issue with each of these methods is that they operate under the
assumptions of strictly neutral evolution, free recombination
among loci, and a lack of recombination within loci, which
can influence parameter inference to various degrees [73, 74].
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A subsequent study [75] also highlights some disadvantages
of this approach and shows using simulations that BPP (which
assumes no gene flow) yields more reliable inferences when
applying the same heuristic thresholds used by PHRAPL, in
some case. Collectively, these studies highlight the importance
of developing robust methods that consider the realistic com-
plexities of the divergence process of populations and species
and have provided new constructive inroads toward address-
ing such complexities.

Machine Learning Algorithms for Studying Gene Flow

Another area of recent interest in the context of population
genomic inference of gene flow is the use of machine learning
techniques to detect regions of the genome likely to have
undergone introgression between populations or species.
Machine learning (ML) methods have revolutionized an enor-
mous diversity of research fields and applications—from
computer engineering and data mining [76] to language pro-
cessing [77] and agriculture [78]—and yet, ML algorithms are
comparatively underused in population genetics and evolu-
tionary research in general, except for handful of recent exam-
ples [79–85]. Perhaps one reason for this is that, as a field, ML
represents a clear departure from more classical population
genetic approaches that have traditionally focused on using
theory and models to study genetic variation and to estimate
parameters of interest. By contrast, ML is primarily concerned
with optimizing predictive accuracy of an algorithm without
the use of parametric models and assumed probability distri-
butions. ML has also been applied recently to other related
areas, including the inference of deep-time reticulation of hy-
bridization network models [86].

The accuracy of ML algorithms is improved by Blearning^
(i.e., improving with experience), rather than fitting models to
data. Free from the constraints of models and their assump-
tions, ML algorithms can be informative while also efficiently
leveraging high-dimensional input data that would otherwise
be intractable to analyze with typical model-based ap-
proaches. This is one outstanding advantage of ML methods
for analyses of population genomic datasets, which can com-
prise thousands to millions of loci or SNPs sampled across
multiple individuals and diverse genomic regions, and for
which likelihood computations of complex, parameter-rich
models would be otherwise infeasible using traditional ap-
proaches. ML methods are primarily classified into unsuper-
vised and supervised learning algorithms, as well as semi-
supervised ML which combines aspects of both [87]. The
primary aim of unsupervisedML is to detect underlying struc-
ture within a dataset in the absence of knowledge about that
structure (i.e., clustering algorithms), while supervised algo-
rithms are typically optimized using training data designed to
predict response variables or to classify input. Applications of
unsupervised ML methods in population genetics and

bioinformatics include a number of related k-means clustering
algorithms [88] and the familiar principle component analysis
(PCA; [89, 90]), which has been used extensively to uncover
population genetic structure and haplotype clusters [e.g., 87].
Coalescent-based hidden Markov models are sometimes con-
sidered to be ML methods as well. Supervised learning algo-
rithms, while commonly used in other bioinformatics analyses
[87, 91], such as predictions of genes [92], gene expression
[93], cancer classification [94], haplotype assembly [95], and
chromatin structure [96], are relatively new in the context of
population genomics.

Using Supervised Learning to Detect Introgressed Regions
of the Genome

Recent applications of ML have addressed a particularly chal-
lenging area of gene flow inference: identifying specific ge-
nomic regions that appear to havemoved between populations
or species, as well as the directionality of gene flow. Most
genome-wide approaches have traditionally focused more on
determining whether gene flow has occurred between popu-
lations, migration rate estimation, and demographic model
testing. These approaches are therefore not informative about
which loci have likely crossed population boundaries and how
their specific movement has shaped the genomic landscape of
genetic variation and speciation. A recent and creative use of
ML was employed specifically for this purpose in a study by
Schrider et al. [81], in which the authors present a new super-
vised ML algorithm applied to study introgressed loci be-
tween two closely related species ofDrosophila. The method,
called Finding Introgressed Loci using Extra Tree Classifiers
(FILET), combines information across a large number of sum-
mary statistics to classify the genealogical history of a geno-
mic region. FILET implements an Extra-Trees algorithm that
uses an ensemble of learning technique to Bvote^ among ran-
domly generated decision trees and assign specific windows
of the genome to three different classes of gene flow: two
directional classes with gene flow from one population to
another and a third Bno gene flow^ class. This Extra-Trees
algorithm is an extension of the random forest algorithms
[97] and has been used previously to distinguish between hard
and soft sweeps in the human genome [83, 98].

One obvious advantage of the ML-based approaches of
FILET is the ability to combine genealogical information
encoded by a suite of summary statistics, including 18 single-
population statistics (e.g., π, Tajima’s D) and at least 14 two-
population statistics (e.g., FST, dxy) and including five newly
proposed statistics shown to be powerful for identifying
introgressed loci. The ability to efficiently incorporate such a
large and diverse amount of information from population
genomic-scale datasets (e.g., 157 whole genomes) enables
FILET to detect introgression between two populations with
high sensitivity—even for particularly challenging scenarios of
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very recent divergence, when other approaches might be intrac-
table or imprecise, such as methods that use only a single or few
statistics. Comparisons with another popular approach,
ChromoPainter [99], reveal the greater statistical power of
FILET to identify introgressed loci and the directionality of gene
flow at loci under challenging demographic scenarios (e.g.,
Fig. 2 of Schrider et al. 2018) and the relative robustness of
FILET to potentially confounding effects of introgression from
ghost populations (e.g., Fig. S4 of Schrider et al. 2018). Another
interesting advantage of using ML for this purpose is the ability
to rank population statistics in order of their effectiveness for
detecting introgressed loci (Table S2 of Schrider et al. 2018)—
such information can be useful for many aspects of population
genetics research, including the development of new approaches
(both ML-based and otherwise), and for strategically selecting
particular statistics to measure based on their usefulness.

In a follow-up review article [80], the authors argue for a
paradigm shift in the field of population genetics occurring with
the use of supervised ML-based methods. Indeed, given the
favorable performance of FILET and its easily extendable
framework, it does seem likely that supervised learning tech-
niques hold exciting promise for furthering our understanding
of introgression and admixture in nature. Some areas of future
improvements include the incorporation of additional processes
(such as natural selection) and more complex demographic
models (e.g., additional populations and ghost populations),
both of which should be relatively straightforward to incorpo-
rate into the simulated datasets used to train the algorithm (an-
other advantage of ML-based methods). Currently, FILETonly
considers three different classifications (no gene flow or two
directional gene flow classes), and it seems likely that other
classes could be easily considered (e.g., reciprocal gene glow),
as well as variation in the specific dynamics of gene flow. For
example, FILET currently models gene flow as a discrete
Bpulse^ rather than a continuous flow, and FILET does not
currently consider adaptive introgression, which has been in-
ferred in a variety of empirical systems [100–102].
Nonetheless, the ML-based approach of Schrider et al. [81]
represents an excellent foundation for future ML-based ap-
proaches and highlights the utility of supervised learning to
target important yet often difficult questions in genomic studies
of natural populations. The authors of these two papers note, as
we do here, that other ML-based methods, such as vector ma-
chines [103] and deep learning [79, 104], may also prove useful
for the purpose of studying gene flow using population geno-
mic data.

Conclusions

An enormous amount of progress has been made over the past
decade to advance our ability to effectively study gene flow
using population genomic data. In this review, we have

discussed how emerging approaches, such machine learning-
based methods and approximate likelihood computation, hold
particular promise for studying complex models of demo-
graphic and targeting specific regions of the genome that
may be introgressed. We have also explored how new im-
provements on widely used test statistics may provide more
accurate and precise methods for detecting gene flow in na-
ture. Despite these strides forward, key challenges still remain,
such as the incorporation of more complex and realistic
models of population divergence and structure. Perhaps most
notably, there is still a general lack of efficient, full model-
based frameworks (i.e., without approximate computation)
that hinder the broad utility of powerful full likelihood-based
approaches for the analyses of genome-scale data under
models of gene flow and population divergence. This may
be an especially useful avenue for further investigation, in
order to strategically leverage full likelihood methods in the
context of whole-genome data from populations.
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